First Year B.Sc. Degree Examination, August/September 2008 Directorate of Correspondence Course MATHEMATICS (Paper - I) (Repeaters)

Time: 3 Hours

Max. Marks: 90

Note: Answer any SIX full questions of the following choosing atleast one from each Part.

PART - A

PART – A	
1. a) i) Find ϕ (72).	2
ii) Find the g.c.d. of 506 and 1155.	2
b) Show that $712! + 1 \equiv 0 \pmod{719}$.	5
c) Solve the simultaneous congruences $x \equiv 2 \pmod{5}$ and $3x \equiv 1 \pmod{8}$ using chinese remainder theorem.	6
2. a) i) Define a partition of nonempty set.	2
ii) Define $f: R \to R$ by $f(x) = x^2$ and $g: R \to R$ by $g(x) = \sin x \ \forall x \in R$ show	2
that gof \neq fog. b) Let $f: X \to Y$ be a subjective function and c be any subset of Y. Show that $f[f^{-1}(c)] = c$.	5
c) Show that $f: R - \{1\} \rightarrow R - \{3\}$ defined by $f(x) = \frac{3x-2}{x-1}$ is a bijective map find a formula for f^{-1} 2008	6
PART - B	
3. a) i) Show that the function $f(x) = x $ is continuous but not differentiable at $x = 0$.	2
ii) Find $\frac{dy}{dx}$ if $x^y = y^x$.	2
b) Discuss the continuity of the function $f(x)$ defined by $f(x) = \begin{cases} x^2 + 2 & \text{if } x > 1 \\ 2x + 1 & \text{if } x = 1 \\ 3 & \text{if } x < 1 \end{cases}$	
at $x = 1$.	5
c) If $x = \tan(\log y)$ prove that $(1 + x^2) y_{n+2} + (2nx + 2x - 1) y_{n+1} + n(n+1)y_n = 0$.	6
P.T.0	ο.

4. a) i) Find $\frac{ds}{dt}$ for the parametric curve $x = a \cos^3 t$, $y = a \sin^3 t$. 2 ii) Show that the curvature at all points on the circle $x^2 + y^2 = a^2$ is constant. 2 b) Obtain the pedal equation for the curve $r = a(1 + \cos \theta)$. 5 c) Show that the evolute of the parabole $y^2 = 4ax$ is $27ay^2 = 4(x - 2a)^3$. 6 PART - C 5. a) i) Find the equation of the plane passing through the point (2, 3, 4) and parallel to the plane 5x - 6y + 7z = 3. 2 ii) Find the point of intersection of the line x = t - 1, y = 3t - 3, z = -2t + 2 and the plane 3x + 4y + 5z = 5. 2 b) Does the three points (2, -1, 4), (3, 2, 6) and (1, -4, 2) are collinear. 5 c) Show that the two lines l_1 and l_2 intersect hence find the point of intersection 6 6. a) i) Find the equation of the sphere whose centre is at (1,2,3) and which passes through the point (0, -1, -2). 2 ii) Find the singular points on the curve $y^2 = 2ax$ 2 b) Find all the asymptotes to the curve $x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$. 5 c) Find the surface area of the solid obtained by revolving the cardiode $r = a(1 + \cos\theta)$ about the initial line. 6 PART - D 7. a) i) Express the matrix $A = \begin{bmatrix} 4 & 2 & 3 \\ 9 & 7 & 4 \end{bmatrix}$ as the sum of symmetric and skew symmetric matrices. 2 ii) Find the real value of λ for which the system of equations 2x - y + 2z = 0, 3x + y - z = 0, and $\lambda x - 2y + z = 0$ has a non-trival solution. 2

c) Test the following non-homogeneous equation for consistency and solve:

$$2x + 3y - z + 5t = 1$$
, $3x - y + 2z - 7t = 2$

$$4x - y - 3z + 6t = -1,$$
 $x - 2y + 4z - 7t = 0$

8. a) i) Evaluate
$$\int \frac{1}{\sqrt{a+x}+\sqrt{b+x}} dx$$
.

ii) Evaluate
$$\int_{0}^{\pi/2} \sin^{6} x \cos^{8} x dx$$
b) Evaluate
$$\int_{0}^{\pi} \frac{dx}{9+16\cos^{2} x}$$
EXAM

5
c) Evaluate
$$\int_{0}^{\pi} \frac{\sin^{4} \theta}{(1+\cos \theta)^{2}} d\theta$$
2008

b) Evaluate
$$\int \frac{dx}{9+16\cos^2 x}$$
. EXAM

c) Evaluate
$$\int_0^{\pi} \frac{\sin^4 \theta}{(1+\cos \theta)^2} d\theta$$
. 2008