upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

Reg. No. :			1	II	T	
		<u> </u>				

S 4062

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2007.

Second Semester

Electronics and Communication Engineering

PH 1154 — PHYSICS — II

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the effect of parallel electric and magnetic fields on an electron at rest?
- 2. How are energy bands formed in solids?
- 3. Compare the variation of conductivity of metals with that of semiconductors as temperature increases.
- Mention the isotope effect of superconductors.
- 5. What is the effect of temperature on dielectric polarization?
- 6. Calculate the cut off wavelength of a silicon photodiode whose bandgap is $1.1 \, \text{eV}$. (Planck's constant = $6.626 \times 10^{-34} \, \text{J.s.}$ Velocity of light = $3 \times 10^8 \, \text{m/s}$).
- Distinguish between the spin alignments of antiferro-and ferri-magnetic materials.
- Mention the general formula and structure of ferrites.
- 9. Mention the methods of bulk crystal growth.
- 10. Define: SSI, MSI, LSI and VLSI circuits.

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

PART B $-(5 \times 16 = 80 \text{ marks})$

			(0 1 20 - 00 marks)	
11.	(a)) (i)	Derive an expression for the electrical conductivity of a me in terms of electron concentration, its mass and relaxation time.	tal (8)
		(ii)	Obtain a relation for the distillacement of an electron due to perpendicular electric field if the electron has non-zero init velocity	a ial
			2.7	(8)
			Or	
	(b)	De	fine density of states of electrons. Derive an expression for it. $(2+1)$.4)
12.	(a)	Dis equ	ccuss the theory of diffusion in semiconductors. Hence deduce the nation of continuity for any one type of carrier. $(6+1)$	
			Or	
	(b)	Exp	plain the theory and applications of Hall effect. (8 +	8)
13.	(a)	(i)	What is dielectric loss? Deduce an expression for it.	6)
		(ii)	Discuss the different dielectric breakdown mechanisms. (16	0)
			Or	
	(b)	(i)	Distinguish between direct and indirect band gap semiconductors.	
			(6	3)
		(ii)	Explain the construction and working of a twisted nematic liquic crystal display device.	
14.	(a)	(i)	In a magnetic material, the field strength applied is 10^6 amperes/m If the magnetic susceptibility of the material is 0.5×10^{-5} Calculate the intensity of magnetization and flux density in the material. ($\mu_0 = 4\pi\times10^{-7}$ Henry/m).	е
		(ii)	Discuss the processes of domain magnetization and the various contributions to domain energy of a ferromagnetic material. (12)	8
			\mathbf{Or}	
	(b)	(i)	Explain the method of recording in and reproduction from magnetic tapes. (8)	
		(ii)	Explain the magnetic bubble storage devices and their working. (8)	ı
			_	

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

15. (a) Discuss the liquid phase, vapour phase and molecular beam epitaxial growth techniques with necessary schematic diagrams. (6+6+4)

Or

(b) Write short notes:

(i) Selective diffusion method.
(ii) Thin film technology.
(5)
(iii) Thick film technology.
(5)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com