BT-6/J07

Digital Signal Processing (2005-06)

Paper : II ECE-306 E

Option: II

Time : Three Hours] [Maximum Marks : 100

Note: Attempt any FIVE questions.

 (a) Compute the unit step response of the system with impulse response

 $h(n) = \begin{cases} 3^n, n < 0 \\ \left(\frac{2}{5}\right)^n, n \ge 0 \end{cases}$

- (b) Determine the z-transform of x (n) = $a^{|n|} \sin w_0 n$, |a| < 1. Also sketch its pole-zero pattern.
- 2. (a) Explain the properties of DFT.

(b) Determine the 8-point DFT of the sequence

 $x(n) = \{0, 1, 2, 3, 4, 3, 2, 1\}$

using DIF-FFT algorithm.

3. (a) Obtain Direct form-I, Direct-II, Cascade and Parallel form structure for the following system

 $H(z) = \frac{2(1-z^{-1})(1+\sqrt{2}z^{-1}+z^{-2})}{(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})}.$

(b) Sketch lattice ladder structure for the system

 $H(z) = \frac{1 - 0.8z^{-1} + 0.15z^{-2}}{1 + 0.1z^{-1} - 0.72z^{-2}}.$

4. (a) Consider an FIR lattice filter with coefficients $K_1 = 0.65, K_2 = -0.34 \text{ and } K_3 = 0.8.$

 Find its impulse response by tracing a unit impulse input through the lattice structure.

(ii) Draw the equivalent Direct from structure. 12

(b) Explain Direct form, Cascade and transposed from structures for FIR filters.
8

5. (a) Show that FIR filters are always stable. 3

(b) Determine the coefficients {h(n)} of a linear phase FIR filter of length M = 15, which has a symmetric unit sample response and a frequency response that satisfies the condition

$$H_r\left(\frac{2\pi K}{15}\right) = \begin{cases} 1, K = 0, 1, 2, 3\\ 0, K = 4, 5, 6, 7 \end{cases}$$

8

12

6.	(a) Explain design of optimum equiripple FIR fillers.
	(b) Explain windowing technique.
7.	Determine the system function H(z) or lowest order Chebyshev digital filter that meets the following specifications:
	(i) $\frac{1}{2}$ - dB ripple in passband, $0 \le \omega \le 0.24\pi$
	(ii) At least 50 dB attenuation in the stopband $0.35\pi \le \omega \le \pi$.
	Use Bilinear transformation.
8.	Write short notes on any TWO of the following:
	(a) Goertzel algorithm
	(b) Applications of FFT algorithm
	(c) Overlap add and overlap save method. 20
-	

Comment of the second of the s

a Marin describert, a chaque la come de