BT-6/M06

Digital Signal Processing

Paper: ECT-306

Attempt any FIVE questions.

Time: Three Hours]

Note:

[Maximum Marks: 75

SECTION-I (a) Compute the z-Transform of $x(n) = a^{|n|} \sin w_0 n$, |a| < |8 (b) A digital Filter is characterised by the transfer function $H(z) = \frac{1 + 2z^{-1} + 3z^{-2} + 2z^{-3}}{1 + 0.9z^{-1} - 0.8z^{-2} + 0.5z^{-3}}$ Check the stability of the filter using Jury-Marden stability criteria. (a) Determine 8-point DFT of the sequence 2. $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIF-FFT, radix-2, algorithm. (b) Explain in-bit place computation in context of FFT algorithms. POWESECTION-VILLED GE 3. (a) Consider an FIR lattice filter with coefficients K₁ = 0.65, $K_2 = -0.34$, and $K_3 = 0.8$. Find its impulse response by tracing a unit impulse input through the lattice structure. (ii) Draw the equivalent direct form structure. 10 5 (b) Explain state-space structure. Consider a causal IIR system with system function $H(z) = \frac{1 + 2z^{-1} + 3z^{-2} + 2z^{-3}}{1 + 0.9z^{-1} - 0.8z^{-2} + 0.5z^{-3}}$ (i) Determine the equivalent lattice-ladder structure. (ii) Check if the system is stable. 15 SECTION-III (a) Show that FIR filters are always stable filters. 5. (b) Design a 15 tap causal linear phase low pass FIR filter with

cut off frequency $\frac{\pi}{4}$ using a rectangular window.

12

0.	the requirements for a proper window function.	What 8
	(b) Compare IIR and FIR filters.	3
	(c) Derive the conditions for linear phase for FIR filter tra- function.	
	SECTION—IV	
7.	Determine the system function $H(z)$ of the lowest Chebyshev digital filter that meets the following specificat (i) 0.75 dB ripple in the passband $0 \le w \le 0.24\pi$	
	(ii) At least 50 dB attenuation in the stopband 0-35π ≤ w	≤π. ·
	Use Bilinear transformation.	15
8.	Explain Design of IIR filters in frequency domain. Compulsory question:	15
9.	Explain the following:	
	(a) Schur-Cohn Fujiwara stability criteria.	4
	(b) Gibb's Oscillations.	3
	(c) Frequency sampling structure	. 4
	(d) Bilinear transformation.	4

POWER OF KNOWLEDGE

of the autor present of

