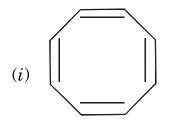
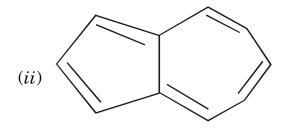
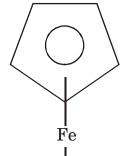
[3862]-191

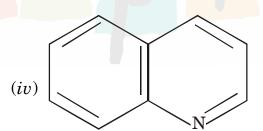
S.E. (Chem.) (First Semester) EXAMINATION, 2010 CHEMISTRY-I (2008 COURSE)


Time: Three Hours


Maximum Marks: 100


- **N.B.** :— (i) Answers to the two Sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.

SECTION I


- 1. (a) What are the postulates of molecular orbital theory? Explain the paramagnetic behaviour of O_2 molecule. [6]
 - (b) Sketch the shapes of the M.O's formed by the overlap of atomic orbitals. [6]
 - (c) Classify the following compounds as aromatic and non-aromatic: [4]

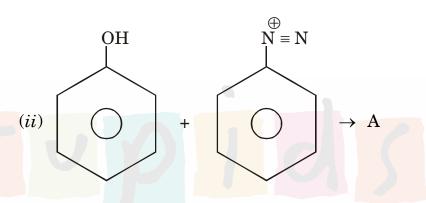
(iii)

Or

- **2.** (a) What are the conditions necessary for delocalization? Explain the delocalization in benzene. [6]
 - (b) Give reasons:
 - (i) Guanidine is a strong base
 - (ii) Phenol is acidic in nature
 - (iii) Oxalic acid is stronger than formic acid. [6]

[3862]-191

- (c) Draw the orbital picture and show the relative order of stability of free radicals and carbanions. [4]
- 3. (a) Give an comparative account for $S_N 1$ and $S_N 2$ reactions. [6]
 - (b) Explain why $-NO_2$ group is deactivating and m-directing. [4]
 - (c) Predict the product: [6]
 - $(i) \quad \mathrm{CH_3Br} \ + \ \mathrm{CH_3NH_2} \ \rightarrow$

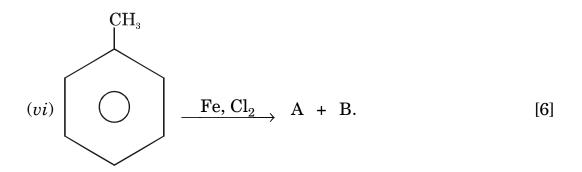

Fuming H₂SO₄

Heat

- (iv) CH₃COCl NaNH₂
- $(v) \ \ \mathrm{CH_3CH} \ = \ \mathrm{CH_2} \ + \ \mathrm{HI} \ \ \rightarrow$
- $(vi) (CH_3)_3 CCl \xrightarrow{\text{Base}} Polar Solvent$

- **4.** (a) Discuss the mechanism of Beckmann's rearrangement. [4]
 - (b) What is sulphonation? Give the mechanism for sulphonation of benzene. [6]
 - (c) Identify A and B in the following reactions:

$$(i) \quad 6\mathrm{CH_3-CH=CH_2} \ + \ \mathrm{B_2H_6} \ \to \ \mathrm{A} \quad \underline{ 6\mathrm{H_2O_2}} \quad \mathrm{B}$$



$$(iii)$$
 CH $_3$ OCH $_2$ CH $_3$

$$A + B$$

$$(iv) \ \, \mathrm{C_6H_5CHO} \ \, + \ \, \mathrm{Br-CH_2-COOC_2H_5} \ \, \frac{(i) \ \mathrm{Zn, \ ether}}{(ii) \ \mathrm{H^+, \ H_2O}} \quad \mathrm{A}$$

$$(v) \qquad \qquad + \text{ CH}_3\text{COCl} \quad \xrightarrow{\text{anhyd}} \text{ A + B}$$

- **5.** (a) What are conductometric titrations? Describe briefly the different types of conductometric titrations. [6]
 - (b) Discuss the interferences and limitations in flame photometry. [4]
 - (c) Give reasons:
 - (i) The equivalent conductance of an aqueous solution of a weak electrolyte increases on dilution but the specific conductance decreases.
 - (ii) The equivalent conductance of a strong electrolyte changes with its concentration. [6]
 - (d) Electrolytic specific conductance of 0.25 mol L⁻¹ solution of KCl at 25° C is 2.56×10^{-2} ohm⁻¹ cm⁻¹. Calculate its molar conductance.

Or

6. (a) What are ion-selective electrodes? Describe the working and construction of a glass electrode as a solid-state membrane electrode. [4]

[3862]-191 5 P.T.O.

- (b) State and explain Kohlrausch's law. The ionic conductance $\lambda^0_{H^+}$ and $\lambda^0_{Cl^-}$ are 349.8 and 196.7 cm² ohm¹-1 equiu¹-1 respectively. At 25°C κ of water = 5.7 \times 10⁻⁸ ohm¹-1 cm¹-1. Calculate the ionic product of water. Given $_0 = \Lambda$. [6]
- (c) What is the principle of flame photometry? Describe the premix or laminar flow burner. [4]
- (d) Calculate the electrode potential of titration mixture when 90 ml of Ce⁺⁴ is added during titration of 100 ml of 0.1 N Fe⁺² ion solution taken in flask against 0.1 N Ce⁺⁴ ion solution added from burette. [4]

(Given:
$$E_{1}^{0} = 0.785$$
 volt, $E_{2}^{0} = 1.45$ volt)
$$Fe^{+2} \qquad Fe^{+3} + e^{-} (E_{1}^{0} = 0.785 \text{ volt})$$

$$Ce^{+4} + e^{-} \qquad Ce^{+3} (E_{2}^{0} = 1.45 \text{ volt})$$

SECTION II

- 7. (a) Obtain rate equation for first order kinetics and give its characteristics. [6]
 - (b) Define the rate of chemical reaction. Explain the experimental techniques for the rate determination. [6]
 - (c) For the decomposition of acetone dicarboxylic acid rate constant is 2.46×10^{-5} at 273 K and 1.63×10^{-3} at 303 K. Calculate the energy of activation of the reaction. [4]

Or

- **8.** (a) What is steady state approximation? How is it useful in deriving rate law for a photochemical reaction? [6]
 - (b) Show that in first order reaction, time required for 75% completion is double the time required for 50% reaction completion. [6]

[3862]-191

(c)	The reaction 2HBr \rightarrow H ₂ + Br ₂ is second order with rate
	constant 1.2×10^{-5} liter per mole per sec. at 600 K. How
	long will it take to decompose 40% if HBr is kept at 50 kPa
	at 500 K in closed vessel. [4]
(a)	Explain the principle, technique and applications of column
	chromatography. [6]
(<i>b</i>)	What is fuel cell? Explain construction and working of polymer
	electrolyte membrane fuel cell. [6]
(c)	Define:
	(i) Charge-discharge cycles
	(ii) Energy density
	(iii) Specific energy
	(iv) Power density. [4]
	Or
(a)	Write a note on lithium batteries with various compositions. [6]
(<i>b</i>)	What is gas chromatography ? Give its instrumentation. [6]
(c)	State the applications of HPLC. [4]
(a)	Give any one synthetic method and uses of the following
` ′	dyes:
	dyes.
	(i) Phenolphthalein
	(ii) Crystal violet. [6]
(<i>b</i>)	Discuss the aromatic character of pyrrole by giving its orbital

9.

10.

11.

[3862]-191 7 P.T.O.

and resonance structure.

[6]

- (c) Write the chemical reactions for the following:
 - (i) Reduction of quinoline with platinum catalyst in the presence of CH₃COOH.
 - (ii) Action of sodamide on pyridine.
 - (iii) Catalytic reduction of furan in presence of Nickel. [6]

 Or
- 12. (a) How are dyes classified according to their chemical constitution?

 Give specific example of each. [6]
 - (b) Write a note on Skraup synthesis of quinoline. [6]
 - (c) Complete the reaction: [6]
 - (i) + $(CH_3CO)_2O$ $BF_3/0^{\circ}C$

$$(ii) + CH_3I \longrightarrow$$