Control System - II

Con. 5600-07.

P3/D/UP(D/-O), E07-9-12, 796

(REVISED COURSE) (3 Hours)

N. B.: (1) Question No. 1 is compulsory.

- (2) Answer any four out of remaining six questions.
- (3) Assume suitable data wherever required.
- (4) Figures to the right indicate full marks.
- Attempt any five :—
 - (a) Describe the meaning of relative stability in reference with s-plane and Bode
 - (b) Explain in short with diagrams, the controller configurations used in controller design.
 - (c) Explain in short
 - (i) Random effects and
 - (ii) Disturbance Rejection.
 - (d) Explain the need of state estimator (observer) in designing controller via statespace approach.
 - (e) Explain the meaning of stability if the system is defined in discrete time.
 - (f) Explain in short -
 - (i) Tracking effectiveness
 - (ii) Systematic effects.
- 2. A unity feedback system with forward transfer function $G(s) = \frac{k}{s(s+7)}$, is operating 20

with closed loop step response that has 15% overshoot. Do the following :-

- (a) Estimate the setelling time
- (b) Design a lead compensator to decrease the setelling time by three times. Choose the compensators zero to be at -10, Use Root locus technique.
- 3. Consider the unity feedback system with $G(s) = \frac{k}{(s+2)(s+4)(s+6)}$ 20

Design a compensator that will yield Kp = 20 without appreciably changing the dominant pole location that yields a 10% overshoot for the uncompensated system. Use root locus technique.

4. For a unity feedback system with a forward transfer function -

G (s) =
$$\frac{k}{s (s + 50) (s + 120)}$$

Use frequency response techniques to design a lag compensator that will improve the steady-state error tenfold, while still operating with 20% overshoot.

20

B. CTED DI New Contrel Syst. I 15/1909. Con. 5600-CD-7077-07.

 Design a linear state-feedback controller to yield 20% overshoot and a settling time 20 of 2 seconds for a plant,

G (s) =
$$\frac{(s+6)}{(s+9)(s+8)(s+7)}$$
,

that is represented in state space in cascade form by,

$$[\dot{z}] = [A][z] + [B]u = \begin{bmatrix} -7 & 1 & 0 \\ 0 & -8 & 1 \\ 0 & 0 & -9 \end{bmatrix} [z] + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} [u]$$

$$y = [c][z] = [-1 \ 1 \ 0][z]$$

6. Design an observer for the plant $G(s) = \frac{1}{(s+7)(s+8)(s+9)}$

whose estimated plant is represented in state space in cascade form as -

$$[\dot{\hat{z}}] = [A] [\hat{z}] [B] u = \begin{bmatrix} -7 & 1 & 0 \\ 0 & -8 & 1 \\ 0 & 0 & -9 \end{bmatrix} [\hat{z}] + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$\left[\boldsymbol{\hat{y}} \right] = \left[\boldsymbol{c} \right] \left[\boldsymbol{\hat{z}} \right] = \left[\boldsymbol{1} \quad \boldsymbol{0} \quad \boldsymbol{0} \right] \left[\boldsymbol{\hat{z}} \right]$$

The closed-loop step response of the observer is to have 10% overshoot with 0.1 second settling time.

- 7. Write short notes on any two :-
 - (i) Controllability and Observability
 - (ii) Antialias Prefilters
 - (iii) A/D and D/A converters.