MCA-648 MCA-08

M.C.A. DEGREE EXAMINATION - JUNE 2008.

First Year/Second Semester
COMPUTER ORIENTED NUMERICAL METHODS

Time : 3 hours
Maximum marks : 75
Answer for 5 marks questions should not exceed 2 pages.

Answer for 10/15 marks questions should not exceed 5 pages.

PART A - ($5 \times 5=25$ marks $)$
Answer any FIVE questions.

1. Explain Secant method for solving non-linear equations.
2. Derive the iterative formula to compute the square root of a positive number.
3. Compare direct and iterative methods to solve the system of Linear Equations.
4. Solve by Cramer's rule :

$$
\begin{aligned}
& x+4 y=5 \\
& 2 x-y=1 .
\end{aligned}
$$

5. What is inverse interpolation? Explain.
6. Explain the principle of least squares.
7. Write the formula of R-K methods upto Fourth Order.

PART B - $(5 \times 10=50$ marks $)$

Answer any FIVE questions.
8. Find a root of the equation $x \log _{10} x=1.2$ by Newton's method.
9. Find a root of the equation, by bisection method :

$$
3 x=\cos x+1 .
$$

10. Solve the system of equations.

$$
\begin{aligned}
& 10 x+y+z=12 \\
& x+10 y+z=12 \\
& x+y+10 z=12, \text { by Gauss Elimination Method. }
\end{aligned}
$$

11. Solve by Gauss-Seidel method :

$$
\begin{aligned}
& 10 x-5 y-2 z=3 \\
& 4 x-10 y+3 z=-3 \\
& x+6 y+10 z=-3 .
\end{aligned}
$$

12. Using Lagrangels formula, fit a polynomial to the following data.

$$
\begin{array}{ccccc}
x & -1 & 0 & 2 & 3 \\
y & -8 & 3 & 1 & 12
\end{array}
$$

Hence find y (1).
13. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by Simpson's $1 / 3$ rule and 3/8 rule.
14. Solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ for $x=0.2,0.4$ given $y(0)=1$, using R-K method of fourth order.

