B. E. (Electronics) (sem VIII) (Rov) 22/5/07

1fh-19-5-Ex-Nk-07.2

Con. 2656-07.

power Electronics.

(REVISED COURSE)

ND-8234

library

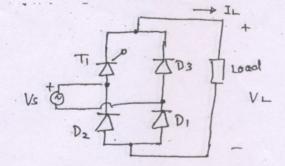
(3 Hours)

[Total Marks : 100

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Assume suitble data if required.
- (4) Illustrate answers with sketches whenever required.

1. Explain in brief (any four) :-


20

- (a) Explain the importance of dv/dt and di/dt ratings of SCR.
- (b) Compare BJT, SCR and 1GBT.
- (c) What is an inverter? List a few industrial applications of inverters.
- (d) What is the basic principle of dc chopper operation? Derive an expression for its average dc output voltage.
- (e) Explain the need of commutation in thyristor circuits. What is voltage commutation and current commutation?
- (f) What is Latching current, Holding cement, Forward break-over voltage, Reverse break-over voltage of a Thyristor
- 2. (a) Explain the full wave A.C. control using TRIAC and DIAC. Draw waveforms.

10

10

- (b) Explain inverse cosine triggering circuit for SCR. How triggering angle α is changed?
- (a) (i) A single phase controlled rectifier bridge consists of one SCR and three diodes as shown in the diagram. Sketch output voltage waveform for a firing angle α < 90° for SCR and obtain expression for average output voltage under the assumption of continuous current.

- (ii) Draw waveforms of current through T_1 , D_1 , D_2 and D_3 and I_L if $V_S = V_m$ sinwt.
- (iii) If ac source voltage is 230 V; 50 Hz and firing angle 45° find average output current and power delivered to battery in case Load is of R = 5 Ω , L = 8 mH and E = 100 V.
- (b) Draw and design the UJT triggering circuit. The parameters of the UJT are : $\eta = 0.72, \ I_p = 0.6 \ \text{mA}, \ V_p = 18 \ \text{V}. \ I_V = 2.5 \ \text{mA}, \ V_V = 1.0 \ \text{V}, \ R_{BB} = 5 \ \text{K}\Omega, \ \text{Normal leakage current}$ with emitter open = 4· mA. The firing frequency is 2 kHz. For C = 0.4 μF compute the values of resistors. It is required to change the firing frequency by varying charging resistor R, obtain maximum and minimum values of R and corresponding frequencies.
- (a) Explain the operation of Jones Chopper along with the waveforms across load and capacitor voltage. Obtain an expression for circuit turn-off time available so as to select SCRs with proper turn-off time ratings.
 - (b) A voltage commutated chopper feeds power to a battery-power electric car. The battery voltage is 60 V, starting current is 60 A and thyristor turn-off time is 20 μsec. Calculate the values of the commutating capacitor C and L. Also find Peak current through main thyristor, auxilliary thyrister.
- (a) Draw the circuit diagram and explain working of basic simple single phase parallel inverter without feedback diodes. Draw waveforms for V_c, I_c, voltage and current of a thyristor and output voltage and current.
 - (b) Calculate the output frequency of a series inverter with L = 6 mH, C = 1.2 mF and R = 100Ω . 10 $T_{off} = 0.2$ ms. If the load resistance is varied from 40 Ω to 140 Ω find out the range of output frequency.

6.	(a)	Explain four quadrant operation of a dc drive. How this operation will be achieved? What types of controlled rectifiers will be needed? Suggest the control strategy for the same.	10
	(b)	Explain slip-power recovery scheme in a.c. drives.	10
7.	Write	e short notes on any four :— (a) V/F control for Induction motor (b) Ramp and Pedestal scheme for triggering SCR	20
		(c) Ratings of SCR (d) Effect of source inductance on output voltage of full controlled rectifier (e) Class B commutation of SACR (f) Turn On & Off time of SCR.	