SAT Exam Sample Paper-2011

Time: 3 Hours Max.Marks: 180
NOTE:-

1. Attempt all questions. There is no negative marking. No additional sheets are provided
2. Answer all the questions of the same subject at one place.
3. Students may take around $\mathbf{8 0}$ minutes for Mathematics, 50 minutes for Physics and 50 minutes for Chemistry.
4. Use of calculators, slide rule, graph paper and logarithmic, trigonometric and statistical tables is not permitted.

PART-A : MATHEMATICS

Note:- All answers to questions in Section-A, Section-B and Section-C must be supported by mathematical arguments. In each of these sections order of the questions must be maintained.

SECTION-A

This section has Five Questions. Each question is provided with 5 alternative answers. One or more than one
of them are correct answers. Indicate the correct answer by A, B, C, D, E. (4x3=12 MARKS)

1. If 2011 is written as the sum of 11 consecutive primes in their ascending order, then the 6th prime is
A) 167 B) 187 C) 181 D) 211 E) 183
2. In a triangle $A B C, D$ is the mid point of $B C$ and $A D>B C / 2$. Then A is
A) <900 B) <1200 C) <1350 D) <600 E) <450
3. Let I be a fixed line. $A B C D$ be a square having a fixed side length, moving such that its vertex D is at a
fixed point on the line I and such that the square is on one side of the line I. Let A^{\prime}, C^{\prime} be the feet of the
perpendiculars of A and C on I respectively. Then ${ }^{2} A A^{\prime} D$ and ${ }^{\prime} C^{\prime} C$ are congruent if angle $B^{\prime} A^{\prime}=$
A) 300 B) 450 C) 900 D) 600 E) none of these
4. If $x<y$ and $x+y=k$ then
A) $x<k / 2$ only when $k>0$ B) $y>k / 2$ only when $k>0$ C) $x<k / 2$
D) $y>k / 2$ E) $x<k / 2$ when $k>0$ and $x>k / 2$ when $k<0$

SECTION-B

This section has Five Questions. In each question a blank is left. Fill in the blank. ($4 \times 3=12$ MARKS)
5. In the sequence obtained by omitting the perfect squares from the sequence of natural numbers, 2011th
term is \qquad
6. In a plane, given any three non collinear points, the number of parallelograms that can be formed such
that the three given points become three consecutive vertices is \qquad
7. A certain integer has only two distinct prime factors. The number of its divisors is 6 , and the sum of the
divisors is 28 . The integer is \qquad
8. The value of $2 \log 618.3 \log 63$ in decimal form is \qquad

SECTION-C

State True or False in each of the following statements. (4x3=12 MARKS)
9. $201164+64$ is a composite number.
10. There exist four distinct points A, B, C, D in a plane such that $A D B C$ and $B D$?
11. There exist a pair of non negative real numbers a, b such that $(a-b)(a(a+b)-2 b 2)$ is negative.
12. If n is a natural number, $2 n+1$ and $3 n+1$ are squares then $5 n+3$ is not a prime.

SECTION-D (4x6=24 MARKS)
13. If $[x]$ represents the greatest integer less than or equal to x then solve the equation x2011 $-[x] 2011=(x-[x]) 2011$ in positive real numbers.
14. Find all possible ordered triads (a, b, c) such that $(n+3) 2=a(n+2) 2+b(n+1) 2+c n 2$ for every positive
integer n .
15. State and Prove Alternate Segment Theorem on circles.
16. Write any two functions f : R ? ? ? such that $f(x)=f(x / 2)$ for every real number x.

PART-B : PHYSICS
(10x6=60 Marks)
17.Two bodies of equal volume connected by a string are floating with one of them completely submerged
and the other with half of its volume outside the liquid as in the figure (Below, Left). Find the densities
of the materials of the bodies if the densities are in the ratio 1:3. If the volume of the floating body is doubled, find the fraction of the floating body that now lies submerged in the liquid.(Density of liquid =

800 kgm-3)
18. An insect crawls along the sides of a regular hexagon (Above, Right) with a uniform speed v in the anticlockwise sense. find the magnitude of its average velocity in moving from (i) A to C and (ii) A to D and (iii) A to E
19.Two parallel rays of light separated by 'd' (Below, Left) are incident at the boundary of air and a medium of refractive index $\sqrt{ } 2$ at 45°. Find the angle of deviation of each ray and the distance between
these rays in the medium
20.A wire of resistance R is bent in the form of a circle and is connected to a 220 V source as shown (Above, Right). If the energy provided by the source in 42 s is same as the energy required to raise the
temperature of 11 kg of water through $44 \mathrm{C}^{\circ}$, find the value of R .
21.Resistances of 2Ω and 3Ω are connected in series between terminals A and B, and a potential difference
of 20 V is applied between the terminals. An unknown resistance is connected in parallel to the 3Ω resistance and the current in this unknown resistance is $5 / 12$ times the current that was flowing from A
to B before it was connected. Find the unknown resistance.
22.A long conductor carries a current northward. A moving positively charged particle is located vertically
below the conductor. Find the force acting on it if its velocity is directed (i) downward (ii) westward
23. Rate at which energy is incident on 1 m 2 area facing the sun is 1400 W . The average area of the roof top
of a moderate home is 150 m 2 . Since the angle of incidence of the energy from sun on the roof top varies
during the day, the average rate for a 12 hour duration is half of the maximum rate of incidence at the
noon time. Find the energy received in 12 hour duration by the roof of the building. Assuming yield of

200 MeV per reaction in the fission of uranium nucleus, find the number of reactions that produce the
same amount of energy as provided by the sun to the roof in the 12 hour duration.
Questions 24 to 26 are based on the following physical situation.

A stream of particles each of mass 1 g moving horizontally with a velocity of $5 \mathrm{~m} / \mathrm{s}$ strike a vertical wall.

The particles stick to the wall after hitting the wall. Number of particles per m3 of the stream is 10000.
24. Find the number of particles striking a square area of side 50 cm of the wall in one second.
25. Find the number of particles of the stream that cross a vertical section of area 0.4 m 2 in two seconds
26. The change in momentum of the particles that strike an area 2 m 2 of the wall in four seconds. d
air
medium $\mu=\sqrt{ } 2$
45°
F
AB
C
ED
220 V
90°
PART-C : CHEMISTRY
(15x4=60 Marks)
27. Ferrous sulphate is treated with potassium permanganate in the presence of suphuric acid. Potassium
sulphate, manganese sulphate, ferric sulphate are the products of the reaction. The number of moles of
sulphuric acid required for 1 mole of KMnO 4 \qquad .
28. Amongst the following the total number of compounds whose aqueous solution turns red litmus paper
blue is \qquad .

KCN , K2SO4, NaCl , Zn(NO3)2, FeCl3, K2CO3, NH4NO3, LiCN
29. The value of n in the molecular formula BenAl2Si6O18 is \qquad
30. Total number of diprotic acids among the following is \qquad
H3PO4, H2SO4, H3PO3, H2CO3, H2S2O7, H3BO3, H3PO2, H2CrO4, H2SO3
31. Among the following the number of elements showing only one non-zero oxidation state \qquad
$\mathrm{O}, \mathrm{Cl}, \mathrm{F}, \mathrm{N}, \mathrm{P}, \mathrm{Sn}, \mathrm{Tl}, \mathrm{Na}, \mathrm{Ti}$
32. Iron (II) sulphide is heated in air to form compound A, and an oxide of sulphur. The oxide of sulphur is
dissolved in water to give an acid. The basicity of this acid is \qquad .
33. A current of 10 A flows for 2 hours through an electrolytic cell containing a molten salt of metal X and
results in the deposition of 0.25 moles of metal X at cathode. The oxidation state X in the electrolysed
salt is \qquad .
34. Ar and He are both gases at room temperature. The average velocity of He atom is x times of average
molecular velocity Ar atoms at this temperature. The numerical value of x is \qquad .
(atomic wt of $\mathrm{Ar}=36, \mathrm{He}=4$)
35. Among BF3, NF3, pH3, IF3, IF5 and SF4 the number of species having the same number of loan pair
of electrons on central atom is \qquad
36. On heating 1.763 g of hydrated BaCl 2 to dryness 1.505 g of anhydrous salt remained. Number of moles
of H 2 O present in the mole of hydrated BaCl 2 is \qquad (mol.wt. of anhydrous BaCl 2 is 208)
37. Dry air contains at one atmosphere pressure contains 78% nitrogen 21% oxygen and 1% other gases.

The partial pressure of other gases is ax10-2 atm where a is \qquad .
38. The bond energy of an O-H bond is 109 k .cal mole-1. When $5 \times 10-3$ mole of water is formed, the energy
released in k.cal is \qquad .
39. On decomposition of NH 4 HS the following equation is established $\mathrm{NH} 4 \mathrm{HS}(\mathrm{s}) \mathrm{NH} 3(\mathrm{~g})+\mathrm{H} 2 \mathrm{~S}(\mathrm{~g})$ If the total pressure is p atmospheres then the equilibrium constant $K p$ will be equal to

X
p2
atm2 where x
is \qquad
40. 10 ml of pure ethyl alcohol of density 0.785 g ml was diluted with water to a final value of 100 ml . The
density of resulting solution was $0.9866 \mathrm{~g} / \mathrm{ml}$. Percentage by weight of ethyl alcohol is \qquad _.
41. Match the following

Column - I Column - II
A) 0.55 mole p) 4.48 lit of SO2 at NTP
B) 0.10 mole q) 100 ml of H 2 O
C) 0.20 mole r) 22 g of CO 2
D) 0.50 mole s) 2.24 lit. NH3
t) 0.1 g atom of Iron

SAT Exam Sample Papers-2012

Time: $\mathbf{3}$ Hours Max.Marks: 180
NOTE:-

1. Attempt all questions. There is no negative marking. No additional sheets are provided
2. Answer all the questions of the same subject at one place.
3. Students may take around $\mathbf{8 0}$ minutes for Mathematics, 50 minutes for Physics and 50 minutes for Chemistry.
4. Use of calculators, slide rule, graph paper and logarithmic, trigonometric and statistical tables is not permitted.

PART-A : MATHEMATICS

Note:- All answers to questions in Section-A, Section-B and Section-C must be supported by mathematical arguments. In each of these sections order of the questions must be maintained.

SECTION-A

This section has Four Questions. Each question is provided with 4 alternative answers. One or more than one
of them are correct answers. Indicate the correct answer by A, B, C, D. (4x3=12 MARKS)

1. $\mathrm{x} 2-507 \mathrm{x}+2012<0$ if $\mathrm{x} \hat{\imath}$
A) $(4,503)$ B) $R-(4,503) C)(1,2012)$ D) $(10,201)$
2. A circle of radius 14 units is inscribed in a square. And a square is inscribed in the circle such that its
sides are parallel to the first square then the area bounded between the two squares is equal to
A) 49 B) 98 C) 196 D) 392
3. If P and Q are two subsets of a set S then $(P-Q) \cup(Q-P)$ is equal to
A) (P'ÇQ)U(PÇQ') B) (PUQ) - (PÇQ) C) (PUQ) Ç(PÇQ)' D) (P'UQ') Ç (PUQ)
4. Let $P(x)=\Sigma$
$=$

7
ro
r
$r a x$, where $a 7=1$ and $P(k)=k$ for $k=1,2,3, . ., 7$ then $P(8)=$
A) 5040 B) 5048 C) 5050 D) none of these

SECTION-B

This section has Four Questions. In each question a blank is left. Fill in the blank. ($4 \times 3=12$ MARKS)
5. Area of the region bounded by $|x|+|y|=2012$ is \qquad
6. If $f(n)=n(n+1)$ for all natural numbers n, then the set of values of n such that $f(n+4)=4 f(n)+4$ is
7. Consider a right angled triangle $A B C$ with right angle at A. The radius of its incircle is r. Radius of the circle drawn touching the line segments $A B, A C$ and the incircle of triangle $A B C$ is \qquad
8. A and B are two different numbers selected from the first forty natural numbers. The largest value that

AB
AB
-
. can have is \qquad

SECTION-C

State True or False in each of the following statements. ($4 \times 3=12$ MARKS)
9.
$220112+1$ divides
22012 2-1
10. If x and y are perfect squares and $y=x+1$ then number of such ordered pairs (x, y) is more than 1
11. $\log 213$ is irrational.
12. The number of four digit numbers which are perfect squares and in which the first two digits are equal
to each other and the last two digits are equal to each other is 2

SECTION-D (4x6=24 MARKS)

13. If one root of the polynomial equation $A x 3+B x 2+C x+D=0, A^{1} 0$, is the arithmetic mean of the other two, find a simplest relation between A, B, C and D.
14. Let $f: A \quad B$ be a function defined as $f(x)=(x 2-4 x+4) 1 / 2$ where A and B are subsets of R. Then find
the largest possible subset A of $R+$ such that f is bijective and find the corresponding B.
15. In a triangle $A B C$, if $A D$ is the median through A intersecting the side $B C$ in D then show that
$A B 2+A C 2=2(A D 2+B D 2)$.
16. Find all possible positive integers ' n ' such that $n 4-4 n 3+22 n 2-36 n+18$ is a perfect square.

PART-B : PHYSICS
(10x6=60 Marks)
Questions 17 to 19 are based on the following situation.
Narrow square paths ABCD and abcd have sides of 200 m and 100 m . Two persons P and Q are initially located at a and A respectively. They both start walking in a clockwise sense with speeds of $2 \mathrm{~m} / \mathrm{s}$ simultaneously.
17. When are they farthest from each other?
18. Starting from the same initial positions P and Q walk at $1 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively, find the shortest distance between them.
19. With same initial positions as earlier and the speeds of $1 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$, if Q were to move anticlockwise along the path, find the largest distance between them.
20. A thin long rod A revolves at 300 rpm about a vertical axis. Another rod B is held vertically with it's lower end just above the horizontal plane swept by rod A during it's rotation. Find the maximum length of rod B, if it should fall without being hit by the rotating rod after B is released from rest. (Assume $g=10 \mathrm{~m} / \mathrm{s} 2$)
21. Using 3 identical wires each having resistance 30Ω, letter ' B ' is formed. Ends of the straight wire are connected to a cell of potential difference 220 V . (i) Find the effective resistance of the circuit (ii) find the rate at which energy is delivered by the cell?
22. A cube of side 10 cm is made of a material of density $\mathrm{d} / 2$. It is floating in a large vessel containing two immiscible liquids whose densities are d and $3 d / 2$ (i) Find the depth of immersion of the cube in the denser liquid (ii) Two opposite faces of the cube are pulled apart such that they are 12 cm
apart and the resulting cuboid floats vertically in the same vessel, find its depth of immersion in the denser liquid?
23. A ray of light is incident as shown on the face $A B$ an isosceles right angled prism $A B C$. Find the angle of deviation of the ray emerging through face $B C$. Ray partially reflected at the face $B C$ emerges through $A C$. Find the deviation of this ray too. Refractive index of the material of the prism is $\sqrt{ } 2$.
24. If 2 g of ice at $0^{\circ} \mathrm{C}$ is added to 2 g of water at $60^{\circ} \mathrm{C}$, Find the temperature of resultant mixture? What are the resulting contents?
25. In a nuclear fission reaction 0.01% of the mass of the nucleus undergoing fission is converted in to
energy. Find the energy (E) released in the fission of 20 g of fission material, if the energy released per reaction is 200 MeV . A square meter of the earth's surface receives 1400 J every second from the sun. Find the area which receives the same energy E from the sun in one second. (Assume normal incidence)
26. Two rods A and B of lengths 100 m each are joined end to end. Velocity of sound in A is $800 \mathrm{~m} / \mathrm{s}$ Young's modulus (Y) and density (d) of B are two and eight times of their respective values of A . Find the time taken by sound to travel between the free ends of the rods. (Velocity of sound in the rod is $v=Y d$)

PART-C : CHEMISTRY

SECTION-A: Each question is provided with 4 alternative answers. One or more than one of them are correct
answers. Indicate the correct answer by A, B, C, D. ($5 \times 3=15$ MARKS)
27. Identify the mixed anhydride A) NO B) N2O3 C) NO2 D) N2O4
28. Aluminium sulphate is treated with excess of caustic soda and ammonium hydroxide separately
A) first white precipitate and then clear solution is resulted by both substances
B) first white precipitate and then clear solution is remitted by caustic soda only
C) first white precipitate and then clear solution is resulted by ammonium hydroxide only
D) first white precipitate and then remains as white precipitate
29. Which statement describes a chemical property?
A) CO 2 gas is passed through aqueous solution to prepare aerated drink
B) ethyl alcohol is added to aqueous solution to prepare liquor
C) magnesium ribbon burns in air to give dazzling UV light
D) acid rain occurs during lightening in atmosphere
30. Equal volumes of $0.5 \mathrm{M} \mathrm{HCl}, 0.25 \mathrm{M} \mathrm{NaOH}$ and 2.75 M NaCl are mixed. The molarity of the Cl - ion and NaCl respectively
A) 1.0 M \& 1.0 M B) 1.0 M \& 2.0 M C) 1.0 M \& 0.5 M D) 2.0 M \& 1.0 M
31. In halogens, which of the following increases from iodine to fluorine?
A) bond length B) electronegativity C) ionization energy D) oxidising power

SECTION-B: In each question a blank is left. Fill in the blank. ($5 \times 3=15$ MARKS)
32. Silver coating is formed on the walls of the test tube when silver nitrate is added to the organic compound in the presence of ammonia solution. The functional group present is \qquad .
33. Atoms of elements in a group in the periodic table have similar chemical properties. This similarity is
most closely related to \qquad electron.
34. A gaseous component X is mixed with gaseous component Y form ideal gaseous solution. Similarly a
liquid component A is mixed with another liquid component B form ideal liquid solution. The similarity
in both systems \qquad .
35. The main function cryolite in the extraction of aluminum metal from alumina is \qquad
36. Though nitrogen acts as an inert gas, it is not used as an inert atmosphere in the extraction of magnesium metal. Coal gas is used as inert atmosphere in the extraction. This is because

SECTION-C: Name the compound. (5x3=15 MARKS)
37. The salt which on thermal decomposition leaves a coloured residue, liberated a reddish brown gas and a
colourless gas. The residue reacts with caustic soda to give sodium plumbite.
38. The element $X(Z=85)$ combines with element $Y(Z=38)$. The formula of the binary compound.
39. The product formed at the cathode during electrolysis of aqueous potassium chloride solution.
40. Quick-lime is fused with coke. An unsaturated hydrocarbon is resulted on adding cold water to the
resulting compound.
41. The reduced product is obtained when ammonia is passed over the heated copper oxide.

SECTION-D (5x3=15 MARKS)

42. Calculate the equilibrium constant, K for the reaction $\mathrm{H} 2 \mathrm{O} \mathrm{H}++\mathrm{OH}-$ at 250 C temperature. Given that density of water is $1 \mathrm{gm} / \mathrm{cc}$ at 250 C .
43. The colourless vapours of a colourless liquid are pungent and bring tears in eyes on exposure. The
yellowish green flame is resulted on burning vapours in O 2 . In the presence of platinum catalyst the same reacts to give colourless gas which turns to reddish brown on explosive to air
(a) write balanced equations (b) calculate the volume of oxygen used separately for these reaction when 300 cc of vapour burn in O 2 at STP.
44. pOH of a base in the range of

Give Balanced Equations for Q.No.45-46
45. An oxidizing agent which reacts with concentrated hydrochloric acid on heating, liberating chlorine gas
and forming two metallic chlorides one of which is chromium chloride.
46. A colourless compound decomposes on treatment with dilute HCl with evolution of SO 2 and precipitation of sulphur.

SAT Exam Sample Paper-2010

Time: Two Hours MATHEMATICS Max.Marks: 50
(8.30 AM - 10.30 AM)

NOTE:-

1. Attempt all questions. Rough work must be enclosed with answer book.
2. While answering, refer to a question by its serial number as well as section heading. (eg.Q2/Sec.A)
3. There is no negative marking.
4. Answer each of Sections A, B, C at one place. Elegant solutions will be rewarded.
5. Use of calculators, slide rule, graph paper and logarithmic, trigonometric and statistical tables is not permitted.

Note:- All answers to questions in Section-A, Section-B and Section-C must be supported by mathematical arguments. In each of
these sections order of the questions must be maintained.

SECTION-A

This section has Five Questions. Each question is provided with five alternative answers. One or more than one of them are
correct answers. Indicate the correct answers by A, B, C, D, E. (5x2=10 MARKS)

1. Let $I 1, I 2$ be any two parallel lines and B, C be any two points on $I 1$ and $A 1, A 2, \ldots ., A 2010$ be points on I2. If D i denotes the area of the triangle AiBC and if å =

D

2010
i 1
$i=2010$, Then the area of D A2010BC is
A) 1 B) $1 / 2$ C) 2 D) 2010 E) 1005
2. Let $\{a n\}$ be a sequence of integers such that $a 1=1, a m+n=a m+a n+m n$ for all positive integers m and n. Then a12 is
A) 6 B) 70 C) 78 D) 76 E) 72
3. In a triangle $A B C, a, b, c$ denote the lengths of the sides $B C, C A, A B$. If D is the midpoint of the side $B C$ and $A D$ is perpendicular to AC , then
A) $3 \mathrm{~b} 2=\mathrm{a} 2-\mathrm{c} 2 \mathrm{~B}) 3 \mathrm{a} 2=\mathrm{b} 2-3 \mathrm{c} 2 \mathrm{C}) \mathrm{b} 2=\mathrm{a} 2-\mathrm{c} 2 \mathrm{D}) \mathrm{a} 2+\mathrm{b} 2=5 \mathrm{c} 2 \mathrm{E}$) none of these
4. If k is an integer then which of the following is true?
A) An integer of the form $4 k+1$ can always be put in the form $2 k-1$
B) An integer of the form $4 \mathrm{k}+3$ can always be put in the form $2 \mathrm{k}+1$
C) An integer of the form $2 k-1$ can always be put in the form $4 k+1$
D) An integer of the form $2 k-1$ can always be put in the form $4 k+3$
E) An integer of the form $2 k+1$ can always be put in the form $4 k+3$
5. The number of elements in $\{(a, b, c) / a=b,(a-c) 2=0, a+b+c=0, a, b, c$ are real numbers $\}$ is
A) 0 B) 1 C) 6 D) 3 E) infinitely many

SECTION-B

This section has Five Questions. In each question a blank is left. Fill in the blank. ($5 \times 2=10$ MARKS)

1. The no. of solutions of the equation $x y(x+y)=2010$, where x and y denote positive prime numbers, is \qquad
2. The number of elements in the set $\{n \hat{I} N / n 3-8 n 2+20 n-13$ is a prime number $\}$ is \qquad
3. The solution set of the equation $x 2-4 x+4+(x-2)=0$ is \qquad
4. Given any two diameters of a circle the convex quadrilateral formed by joining the extremities of the diameters is always a
rectangle. True/False \qquad
5. If $P=32010+3-2010, Q=32010-3-2010$ then $P 2-Q 2=$ \qquad
SECTION-C ($5 \times 2=10$ MARKS $)$
6. Solve the equation $\log (2009) \log (2010) 20102009 x=x$.
7. In a quadrilateral $A B C D, A B=3, B C=4, C D=5, Ð A B C=Đ B C D=1200$. Find the area of the quadrilateral.
8. I was trying to solve 5

2
$4>$
x-
. While writing the question I mistakenly wrote a digit other than 5 and solved the inequality and got $2<x<4$. What digit did I write possibly?
4. In a right angled triangle what is the relation between the square of the altitude on to the hypotenuse and the product of the
segments of the hypotenuse?
5. Is it possible to find two functions f and g such that the domain of f is not finite, the domain of g is finite, gof is defined? Justify
your answer.

SECTION-D ($5 \times 4=20$ MARKS)

1. If the last digits (unit places) of the products $1.2 ., 2.3,3.4, . ., n(n+1)$ are added, the result is 2010. How many products are used?
2. Show that four divides any perfect square or leaves a remainder 1. Also show that nine divides cube of any integer or leaves 1 or

8 as remainder.
3. Let $A B$ be a line segment of length 26 . Let C and D be located on the line segment $A B$ such that $A C$ $=1$ and $A D=8$. Let E
and F be the points on one of the semi circles with diameter $A B$ for which $E C$ and $F D$ are perpendicular to $A B$. Find the length
of the line segment EF.
4. In each of the following cases give an example of a system of two linear equations in two variables x and y.
i) A system having exactly one solution ii) A system having no solution
iii) A system having infinitely many solutions
5. Using Mathematical Induction Prove that $32 n+7$ is divisible by 8, " nî N.

CHEMISTRY SAMPLE PAPER-2010

Time: 1 Hour CHEMISTRY Max.Marks : 50
Instructions:
(1) Answer must be written either in English or the medium of instruction of the candidate in high school.
(2) There will be no negative marking
(3) Use of calculators or graph papers is not permitted
(4) Answer all the questions. Each question carries $2 ½$ Marks.

1. What is the action of heat on following salts? Explain with balanced equations.
a) $\mathrm{FeSO} 43 / 43 / 4 \mathrm{D}^{\circledR}$ b) $\mathrm{AgNO} 33 / 43 / 4 \mathrm{D}^{\text {® }}$
2. Sugar forms clear solution but soap forms cloudy solutions. Why?
3. What is the composition of baking powder? Explain how it bakes the bread to make it spongy? (with chemical equations)
4. When iron is exposed to atmosphere surface of the metal becomes brown but silver under similar conditions becomes black. Explain with equations?
5. BH 3 acts as a Lewis acid whereas NH 3 acts as Lewis base. Explain with proper structures?
6. Write the cathodic and anodic reactions when aqueous solution of KNO 3 is electrolysed by using Pt electrodes.
7. What is electrolyte? What is the basic requirement for a substance to act as electrolyte?
8. In the given salt cation is called as basic radical and anion is called as acid radical. Why?
9. Why hydrogen peroxide acts as oxidising as well as reducing agent?
10. Hardness of IA-group elements gradually decreases down the group. Why?
11. What way thermochemical equations are more informative than skeletal and balanced chemical equations?
12. What are the simplest tests that are used for identification of purity of the chemical sample?
13. Total hardness of water cannot be removed by simple heating. Why?
14. CO 2 and SiO 2 are the oxides of elements of same group but CO 2 is a gas but SiO 2 is solid. Why?
15. All exothermic reactions are not spontaneous reactions. Why?
16. What are the internal factors that decide the physical state of the substance?
17. Aqueous solution of CuSO4 cannot be stored in Zn container but aqueous solution of ZnSO 4 can be stored in Cu vessel. Why?
18. Match each of the chemical species in Column I with its property / properties given in corresponding Column II \& Column III. No partial marking.
19. Ethanol (density $=0.7893 \mathrm{~g} / \mathrm{ml}$) and water (density $=0.9931 \mathrm{~g} / \mathrm{ml}$) at 250 C are mixed in the volume ratio $1: 2$ to get solution of density $0.9571 \mathrm{~g} / \mathrm{ml}$. Calculate (i) the fractional change in volume and (ii) the molality of the final solution.
20. Indicate whether the following reaction is exothermic or endothermic by properly computing the given data:
$\mathrm{Mg}+2 \mathrm{Xg} \rightarrow \mathrm{M} 2+$
$g+2 X-$
g;
IE1 of $\mathrm{Mg}=737.7 \mathrm{Kj} \mathrm{mol}-1$; IE2 of $\mathrm{Mg}=1451 \mathrm{Kj} \mathrm{mol}-1$; EA1 of $\mathrm{Xg}=-328 \mathrm{Kj} \mathrm{mol}-1$
Column-I Column-II Column-III
a) BeH 2 1. sp3d2 (i) trigonal planar
b) CH 2 BrCl 2 . sp3 (ii) octahedral
c) PF6
-3. sp2 (iii) distorted tetrahedron
d) BF3 4. sp (iv) linear

PHYSICS SAMPLE PAPER

Time: ONE Hour Max. Marks: 50

- Answers must be written either in English or the medium of instruction of the candidate in high school.
- Answer all the questions in the booklets provided for the purpose.
- There will be no negative marking.
- The relevant working or the argument in arriving at an answer has to be included in your
answer.

- Use of calculators is not permitted.

- Questions in Part A carry 5 marks each , questions in part B carry 2 marks each.

Part A

1 A body dropped from a very large height, experiences resistance to its motion due to air and has a varying acceleration which decreases to zero in time t. Assume the displacement in this time and the velocity acquired at the end of this time are same as that due uniform acceleration of cg (c is a constant
less than 1). The body then travels with a uniform speed acquired at the end of time t. Find the displacement of the body in time 2 t .

2 A bright point object is kept at some distance from a lens of focal length 20 cm . If the object distance is
changed $5 / 6$ times, the distance of the screen from the lens has to be changed by $5 / 3$ times to obtain a
clear image on the screen. Find the distance through which the screen has been moved.
3 ABCD is a square of side 400 m . E and F are points 200 and 300 m away from corner D . Two persons
starting from E and F and moving away from D, meet at B. Where would they meet if they were to travel towards D.

4 In the circuit shown PD across R is V. Find the PD across the resistance $2 R$
5 Two liquids of densities $2 \mathrm{gcm}-3$ and $4 \mathrm{gcm}-3$ of equal volumes form a homogenous mixture. A solid
object made of materials of density $1 \mathrm{gcm}-3$ and $5 \mathrm{gcm}-3$ mixed homogenously is just found to just float
in this mixture. What is ratio by volumes/masses of the materials of the solid object?

6 A man is standing to the south of a vertical conductor carrying current facing the conductor. Direction
of the magnetic field at a position in between him and the wire is from his left to right. What would be
magnetic field direction behind him if he moved to a position (i)east of the conductor (ii) to the north
of the conductor. Assume he always faces the conductor and current direction in the wire remains constant. (Express these directions as east or west etc..)

7 Average energy required by an adult to sustain himself is 1500 kilocalories per day. A medium sized
banana is about 100 g and provides about 100 kilocalories. How many kg of bananas are required per day
to sustain a population of 1000 million? If some how the biological processes were to be sustained by
nuclear reactions, how many kg of mass must disappear to provide this energy?
8 A ray of light is incident at 45° on to a transparent slab of thickness 10 cm made of a material of refractive index Ö2. Find the lateral displacement of the ray as it emerges from the slab.

Part B

9 Length of a wire of resistance R and resistivity r is doubled by stretching it. What will be its new resistance and resistivity?

10 A solid object made of material of density $0.79 \mathrm{gcm}-3$ of negligible coefficient of cubical expansion is
floating in a liquid of density $0.8 \mathrm{gcm}-3$ at $20^{\circ} \mathrm{C}$. When the temperature is raised to $220^{\circ} \mathrm{C}$, the solid object starts sinking in the liquid. Find the coefficient of cubical expansion of the liquid.

11 Velocity time graph of a body is as
shown. Find it's displacement in 10 s .

12 Sound wave of wavelength 0.5 m in air passes in to water. What is its wavelength in water? Also find the
frequencies of the wave in air and water (Velocity of sound in air and water are $350 \mathrm{~m} / \mathrm{s}$ and 1400 m / s
respectively)
13 A 1000 MW thermal power plant burns 106 kg of coal in one hour. How many kg of coal is burnt to
produce the power required to light up a 100 W lamp for 8 hours.

