SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B. Tech – Common to ALL Branches

Title of the paper: Applied Physics

Semester: I Max. Marks: 80 Sub.Code: 6C0003 Time: 3 Hours Date: 13-05-2008 Session: AN

PART - A

 $(10 \times 2 = 20)$

Answer All the Questions

- 1. Among ice, water and steam which has the highest conductivity? Why?
- 2. Define coefficient of thermal conductivity.
- 3. Explain the term anastigmat in optics.
- 4. What is chromatic aberration?
- 5. Define intensity level of sound give its unit.
- 6. A hall has volume of 1.3 x 10⁵ m³. It has a reverberation time of 1.4 second. What is the average absorption coefficient of the surface if the total absorbing surface is 2500 m²?
- 7. Explain the neutral surface of the beam.
- 8. When the length of the cantilever is 50 cm, its depression is about 20 mm for a given load; calculate the depression for the same load when the length of the cantilever is 40cm.
- 9. Give the physical significance of wave function.
- 10. An electron is bound in one dimensional infinite well of width 1 x 10⁻¹⁰ m. Find the energy values in the ground and first excited states.

 $(5 \times 12 = 60)$

Answer All the Questions

11. Describe the forbe's method to determine the thermal conductivity of good conductors.

- 12. Explain the thermal conduction through compound media
 - (i) Bodies in series
 - (ii) Bodies in parallel
- 13. Enumerate the chief defects of spherical lenses. Find the condition for achromatism of two thin lenses when they are in contact.

(or)

- 14. Derive the condition for the longitudinal spherical aberration to be minimum in the case of a pair of co-axial lens system separated by a distance d.
- 15. Describe the rate of growth and rate of decay of sound in an auditorium and derive the Sabine's formula for reverberation time.

(or)

- 16. Define absorption coefficient. Discuss the Various factors affecting acoustics of buildings and how these can be rectified.
- 17. Derive an expression for the internal bending moment of a beam in terms of radius of curvature.

(or)

- 18. Explain the depression of a cantilever and derive the expression for young's modulus of the beam fixed horizontally at one end and loaded at the other end.
- 19. Derive the schroedinger time independent and time dependent wave equations.

(or)

- 20. (i) Explain with neat sketch the experimental verification of matter waves using Davission-Germer experiment.
 - (ii) Calculate the De-Broglie wavelength of an electron accelerated by a potential difference of 150 V.