(1) F.E. Sem -II [Rev] All Branches 7/12/9
App: Mathematics - II.
Con. 3706-09.
(REVISED COURSE) 10-30 to 1:30 SP-8445
(3) Hours) [Total Marks: 100
N.B.(1) Question No. 1 is compulsory.
(2) Attempt any four questions from the remaining six questions.
(3) Figures to the right indicate from marks.
(4) Solve y
$$(x^2y^2 + 2) dx + x(2 - 2x^2y^2) dy = 0.$$

(5) Find area of the cardioid $r = a (1 + \cos 0)$ lying offsite the circle $r = \frac{3}{2}a$.
(6) Show that $\int_{0}^{2} (8-x^3)^{-1/3} dx = \frac{2\pi}{3\sqrt{3}}$.
(7) (9) Prove that $\int_{0}^{2} (8-x^3)^{-1/3} dx = 100 (\frac{a+1}{b+1}) us g D.U.I.S.rule.$
(9) Show that $\int_{0}^{2} x^{n-1} \cos(ax) dx = \frac{7(m)}{a^m} \cos(\frac{m\pi}{2})$
(10) Show that $\int_{0}^{2} x^{n-1} \cos(ax) dx = \frac{1}{m} \cos(\frac{m\pi}{2})$
(2) Evaluate $\iint_{0} \frac{y^2}{x^2 + x^2} \frac{y^2}{y^2}$ over the volume bounded by spheres $x + x^2 + x^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, $b > a > 0$.
(3) (a) Evaluate $\iint_{0} y dxdy$ where R is the region bounded by $y^2 = 4x$ and $x^2 = 4y$.
(b) Shift the length of one arch of the cycloid $x = a(t - \sin t)$, $y = a (1 - \cos t)$ 7
(c) Use Taylor's series method to find $y(t-1)$, given $\frac{dy}{dx} = xy^{1/3} \cdot y(0) = 1$ 7
Dotain solution of the differential equation directly and compare the answer.

Con. 3706-SP-8445-09.

- 4. (a) Solve $(D^2 + 3D + 2)y = e^{-2x} + e^x \cos 2x$.
 - (b) Change the order of integration of

(c) Using Runge-Kutta method of order four find y(0.2) with

Given
$$\frac{dy}{dx} = \frac{1}{x+y}$$
; y(0)=1.

- 5. (a) Solve $x^3 \frac{d^3 y}{dx^3} + 3x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x + \log x$
 - (b) Change to polar co-ordinates and evaluate

$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x dy dx}{\sqrt{x^2+y^2}}$$

(c) Find y when x = 0.05 by Euler's modified method, taking h = 0.05, given that 7 $\frac{dy}{dx} = x^2 + y; y(0) = 1.$

f(x,y)dxdy

7

6

7

7

3. (a) Evaluate

Solve $v (x^2y^2 + 2) dx + x(2 - 2x^2y^2) dy = 0$.

bne so x+

- 6. (a) Solve $(xy^3 + y) dx + 2(x^2y^2 + x + y^4) dy = 0$ (b) Solve $(D^2 + 1) y = cas ecx cot x using Variation of Parameter method. 7$
 - (c) Change the order of integration and evaluate $\int_{0}^{1} \int_{0}^{1} x e^{-y} dy dx$.
- (a) The differential equation for electric charge Q of an electric circuit, consisting 6 of an inductance L, capacitance C and an alternating e.m.f. E sin(nt), applied

in series is $L \frac{d^2 Q}{dt^2} + \frac{1}{C} Q = Esin(nt)$. Solve the differential equation to find the charge Q.

- (b) Find mass of the lamina bounded by $x^2 + 2y 4 = 0$ and X axis if the 7 density at any point varies as its distance from X axis.
 - (c) Find the volume of the paraboloid $x^2 + y^2 = 4z$ cut off by the plane 7 z = 4.