(library)
Con. 3706-09.

App. Mathematics - II

(REVISED COURSE) $10 \cdot 30$ to 1.30 SP -8445
(3 Hours)
[Total Marks : 100
N.B.:(1) Question No. 1 is compulsory.
(2) Attempt any four questions from the remaining six questions.
(3) Figures to the right indicate full marks.

1. (a) Solve $y\left(x^{2} y^{2}+2\right) d x+x\left(2-2 x^{2} y^{2}\right) d y=0$.
(b) Find area of the cardioid $r=a(1+\cos \theta)$ lying atsioy circle $r=\frac{3}{2} a$.
(c) Show that $\int_{0}^{2}\left(8-x^{3}\right)^{-1 / 3} d x=\frac{2 \pi}{3 \cdot \sqrt{3}}$.
(d) Prove that $\int_{0}^{1} \frac{x^{a}-x^{b}}{\log x} d x=\log \left(\frac{a+1}{b}\right.$ us mg D.U.I.S.rule.
2. (a) Solve $\frac{d y}{d x}+\frac{y \log y}{x-\log y}=0$
(b) Show that $\int_{0}^{\infty} x^{m-1} \cos (\mathrm{ax})=\frac{\Gamma(m)}{a^{m}} \cos \left(\frac{m \pi}{2}\right)$
(c) Evaluate $\iiint \frac{\left.y^{2}+z^{2}\right)^{1 / 2}}{}$ over the volume bounded by spheres $+z^{2}=a^{2}$ and $x^{2}+y^{2}+z^{2}=b^{2}, b>a>0$
3. (a) Evaluate $\iint_{R} y d x d y$ where R is the region bounded by $y^{2}=4 x$ and $x^{2}=4 y$. $\quad 6$
(b) Find the length of one arch of the cycloid $x=a(t-\sin t), y=a(1-\cos t) \quad 7$
(c) Use Taylor's series method to find $y(1 \cdot 1)$, given $\frac{d y}{d x}=x y^{1 / 3} ; y(1)=1$. Obtain solution of the differential equation directly and compare the answer.
4. (a) Solve $\left(D^{2}+3 D+2\right) y=e^{-2 x}+e^{x} \cos 2 x$.

(b) Change the order of integration of $\int_{0} \int f(x, y) d x d y$
(c) Using Runge-Kutta method of order four find
 Given $\frac{d y}{d x}=\frac{1}{x+y} ; y(0)=1$.
5. (a) Solve $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x+\log x$
(b) Change to polar co-ordinates and evalu

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x d y d x}{\sqrt{x^{2}+y^{2}}}
$$

(c) Find y when $\mathrm{x}=0.05$ by Euler fied method, taking $\mathrm{h}=0.05$, given that

$$
\frac{d y}{d x}=x^{2}+y ; y(0)=1
$$

6. (a) Solve $\left.\left(x y^{3}+y\right) d x+2\left(x^{2}\right)+x+y^{4}\right) d y=0$
(b) Solve $\left(D^{2}+1\right) y=x \cot x$ using Variation of Parameter method.
(c) Change theor integration and evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$.
7. (a) The differenal equation for electric charge Q of an electric circuit, consisting of an inductance L, capacitance C and an alternating e.m.f. E $\sin (n t)$, applied in series is $L \frac{d^{2} Q}{d t^{2}}+\frac{1}{C} Q=E \sin (n t)$. Solve the differential equation to find the charge Q.
(b) Find mass of the lamina bounded by $x^{2}+2 y-4=0$ and X axis if the density at any point varies as its distance from X axis.
(c) Find the volume of the paraboloid $x^{2}+y^{2}=4 z$ cut off by the plane $z=4$.
