N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions from remaining six questions.
(3) Figures to the right indicates full marks.

1. (a) Prove that $\int_{0}^{1}(x \log x)^{4} d x=\frac{4!}{5^{5}}$
(b) Evaluate $\iint_{R} x y(x-1) d x d y$, where R is the region bound ed $x y=4, y=0, x=1$
and $x=4$
(a) $\frac{d y}{d x}=\frac{\tan y-2 x y-y}{x^{2}-x \tan ^{2} y+\sec ^{2}}$
(b) $\frac{d^{2} y}{d x^{2}}+y=\sin x \sin 2$
(c) $\frac{d^{2} y}{d x^{2}}-(a+b) \frac{d y}{d x}$ aby $e^{a x}+e^{b x}$
(d) $: d r+(2 \cot \theta>20) d \theta=0$.
2. (a) Show that $\frac{\left.n^{n}-x^{n}\right)}{n}=\frac{\pi}{n} \operatorname{cosec}\left(\frac{\pi}{n}\right)$, where $n>1$.
(b) Change the order of integration -

$$
\int_{0}^{1} \int_{\sqrt{2 x-x^{2}}}^{1+\sqrt{1-x^{2}}}
$$

(c) Use the method of variation of parameters to solve -

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{e^{x}}
$$

4. (a) Assuming the validity of DUIS, prove that

$$
\int_{0}^{\infty}\left(\frac{e^{-a x}-e^{-b x}}{x}\right) \sin m x d x=\tan ^{-1}\left(\frac{m}{a}\right)-\tan ^{-1}\left(\frac{m}{b}\right)
$$

(b) Use spherical polar co-ordinates to evaluate $\iiint x y z\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ over the first octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(c) Solve using Taylor's series method, the differential equation $\frac{d y}{d x} x+y$ numerically. Start from $\mathrm{x}=1, \mathrm{y}=0$ and carry to $\mathrm{x}=1.2$ with $\mathrm{h}=0.1$. Com a final result with the value of the exact solution.
5. (a) In a single closed circuit, the current ' i ' at any time ' t ' ais by $R i+L \frac{d i}{d t}=E$, find the current i at any time t , given that $\mathrm{t}=0, \mathrm{i}=a, \mathrm{R}$ and E are constants.
(b) Find the length of the arc of the cardiode a cos θ), which lies outside the circle $r=a \cos \theta$.
(c) Use Euler's modified method to find es of y satisfying the equation $\frac{d y}{d x}=\log (x+y)$, for $x=1.2$ and $x=4$ arr) to three decimals by taking $h=0.2$ and $y(1)=2$.
6. (a) Using Runge-Kutta's fourth order find the numerical solution at $x=0.6$ for $\frac{d y}{d x}=\sqrt{x+y}, y(0.4)=0.4$ step length, $h=0.2$.
(b) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+$
(c) Transform to p-ordinates and evaluate $\iint \sqrt{\left(\frac{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}\right)} d x d y$ where R is the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
7. (a) Find the mass of the leminiscate $r^{2}=a^{2} \cos 2 \theta$, if the density at any point is proportional to the square of its distance from the pole.
(b) Solve $(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+1) \frac{d y}{d x}-12 y=6 x$.
(c) Sketch the region bounded by the curves $y=x^{2}$ and $x+y=2$. Express area of this region as a double integral in two ways and evaluate.

