Total Pages-5

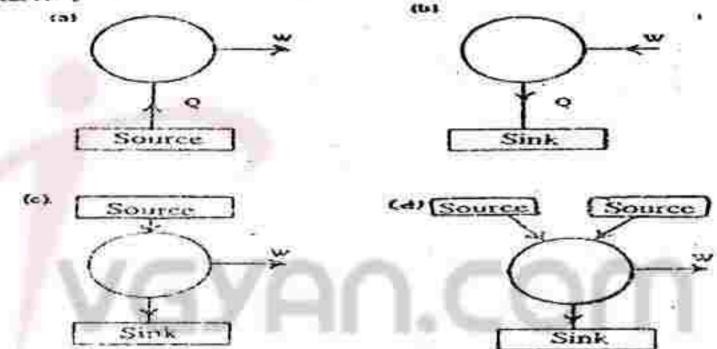
B. Tech BEG 1004

Second Semester Examination, 2004

Thermodynamics

Full Marks: 70

Time: 3 hours


Answer Q. No. 1 which is compulsory and any five from the rest

The figures in the right-hand margin indicate marks

Use of steam tables is permitted

- Answer the following in brief and to-the-point (answer of this question are to be written at one place):
 - (i) Explain what is meant by thermodynamic equilibrium.
 - (ii) What is a reversible process? Which factor cause internal irreversibility?
 - (iii) Show that the stored energy of an isolated system remains constant.

(iv) Which of the following devices are possible and which are impossible according to the Kelvin-Planck statement of the second law?

- (v) An inventor claims that he has built an engine working between temperature limits of 1000 K and 400 K and having an efficiency of 70%. Check if his claim is valid.
- (vi) A diatomic gas (assumed ideal) has a C_p equal to 1-0391 kJ/kg-K. Find the value of its specific gas constant R.

- (vii) Prove that, for an adiabatic process, dh = vdp.
- (viii) An insulated rigid container has 5 kg of air at 30 °C. A paddle wheel fitted in the container agitates the air and transfers 100 kJ of work to this air. What is the change in internal energy of the air?
- (ix) Define the critical point of a liquid. What is the value of h_{rg} at the critical point?
- (x) For a cycle it was calculated that $\oint \frac{\delta Q}{T} = 0.5 \text{ kJ/K}.$

Is such a cycle possible? Give reasons for your answer.

Two tanks A and B are connected through a valve which is initially closed. Tank A contains 3 kg of air at 2 bars and 30 °C. Tank B has a volume of 1 m³ and has air at 5 bars, 40 °C. Now the valve is opened and remains open until the air in both tank comes to a uniform state. Heat transfer to the surroundings brings the final temperature to 27 °C. What is the final uniform pressure if the volume of the connecting pipes is neglected?

- 3 A liquid-vapour mixture of water is initially at a pressure of 10 bars. When this fluid is heated at a constant volume, the process passes through the critical point. Determine the quality at the initial state.
- 10 kg of steam at 5 bar, x = 0.85 undergoes a constant pressure process until the tempe irc becomes 200 °C. Determine: (a) The Work done, (b) The change in internal energy, (c) The heat transferred.
- 5. Air enters a compressor at a rate of 0.72 kg/sec and at 1 bar, 290 K. The inlet velocity is 6 m/sec. Air leaves the compressor at 7 bar, 450 K and with a velocity of 2 m/sec. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Calculate the power input to the compressor.
- 6. Two reversible engines are arranged in series as detailed below:
 The first engine receives energy from a reservoir at T_H and rejects energy to a reservoir at temperature T. The second engine receives the

temperature T. The second engine receives the energy rejected by the first engine from the reservoir at T and rejects energy to a reservoir at temperature T_L . Here $T_H > T > T_L$. Derive an expression for the temperature T in terms of T_H and T_L if the net work of the two engines are equal.

10

- 7. 2 kg of steam at 4 bars, 80% quality is heated at constant pressure until the temperature is 250 °C. Calculate the heat transfer and the entropy change. If this heat is supplied to the steam from a reservoir at 300 °C, what is the entropy change of the Universe?
- 8 Answer any two of the following: 5×2
 - (2) Under what conditions the work done by a system equals ! pdV?
 - (ii) Show that the heat added to a closed system at constant pressure equals the charge in enthalpy.
 - (iii) State and explain the principle of increase in entropy: