SOLUTIONS \& ANSWERS FOR AIEEE-2010
 VERSION - A

[PHYSICS, CHEMISTRY \& MATHEMATICS]

PART - A - PHYSICS

1. The initial shape of the wavefront of the ----

Ans: Planar
Sol: Initially parallel, cylindrical beam will have planar wavefront.
2. The speed of light in the medium is

Ans: Minimum on the axis of the beam
Sol:

Ans: Diverge
Sol: From the above diagram the beam on coming out into the medium, diverges.
4. The speed of daughter nuclei -----

Ans: $\quad c \sqrt{\frac{2 \Delta m}{M}}$

Sol: \quad Mass lost $=(\Delta \mathrm{m})$
Energy released $=(\Delta \mathrm{m}) \mathrm{c}^{2}$
By conservation of momentum and energy each has energy $\frac{1}{2} \frac{M}{2} v^{2}$
$\therefore \frac{1}{2} \frac{M}{2} v^{2}=\frac{1}{2}(\Delta m) c^{2} \Rightarrow v=c \sqrt{\frac{2(\Delta m)}{M}}$
5. The binding energy per nucleon for the

Ans: $E_{2}>E_{1}$
Sol: In radioactive decay, the parent nucleus decays to a more stable daughter nuclei.
$\therefore \mathrm{E}_{2}>\mathrm{E}_{1}$
6. Statement - 1

When ultraviolet light is incident on a photocell, its stopping potential -----

Ans: Statement - 1 is true, Statement-2 is false.
Sol: $h v=K_{\text {max }}+\phi$
\therefore if ho increases, $\mathrm{KE}_{\mathrm{m}, \mathrm{ax}}$ increases
\therefore Stopping potential increases
Photoelectrons have various speeds.
7. Statement - 1:

Two particles moving in the same direction do not ------

Ans: Statement -1 is true, Statement -2 is true; Statement-2 is not the correct explanation of Statement-1

Sol: Statement - 1 is true because the energy considered is not kinetic energy alone. Statement - 1 is correct. Statement -2 is correct but not the explanation for Statement-1.
8. The figure shows the position - time $(x-t)$ graph of ---

Ans: $\quad 0.8 \mathrm{Ns}$

Sol: Impulse = change in momentum
$=m v_{2}-m v_{1}$

$$
=0.4 \times(-1)-0.4 \times 1=-0.8 \mathrm{Ns}
$$

9. Two long parallel wires are at a distance 2d apart. They carry -------

Ans:

Sol:

10. A ball is made of a material of density ρ where ---

Ans:

Sol: Since $\rho_{\text {water }}$ is greater than $\rho_{\text {oil }}$, $\rho_{\text {oil }}$ shoule be above water.
$\rho>\rho_{\text {oil }}$ it should sink in oil and float in water.
Hence Answer 3.
11. A thin semicircular ring of radius r has positive charge q ----

Ans: $-\frac{q}{2 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$

Sol:

Taking symmetrical elements of charge as shown the $\sin \theta$ components cancel out. The $\cos \theta$ components add upto
$2 \int_{0}^{\pi / 2} \frac{K d q}{r^{2}} \cos \theta$
$=2 \int_{0}^{\pi / 2} K .\left(\frac{q}{\pi r}\right) r d \theta \frac{\cos \theta}{r^{2}}$
$=2 \cdot \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\pi r^{2}} \int_{0}^{\pi / 2} \operatorname{co\theta } d \theta$
$=-\frac{q}{2 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$
12. A diatomic ideal gas is used in a Carnot engine as the working substance ----

Ans: 0.75

Sol: In the adiabatic part of the cycle
$\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}^{\gamma-1}$
$=T_{2}\left(32 V_{1}\right)^{\gamma-1}$
$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=(32)^{\gamma-1}=(32)^{7 / 5-1}=(32)^{2 / 5}$
$=4 \Rightarrow T_{1}=4 T_{2}$
$\eta=\frac{T_{1}-T_{2}}{T_{1}}=\frac{3}{4}=0.75$
13. The respective number of significant figures for the numbers \qquad
Ans: 5, 1, 2
14. The combination of gates shown below ------

Ans: OR gate
Sol: $\quad \overline{\bar{A}} \cdot \overline{\bar{B}}=A+B$
OR gate
15. If a source of power 4 kW produces 10^{20} photons / second, the ----

Ans: X-rays
Sol: Energy of a photon $=\frac{4000}{10^{20}} \mathrm{~J}$

$$
\begin{aligned}
& =\frac{4000}{10^{20}} \times \frac{1}{1.6 \times 10^{-19}} \mathrm{eV} \\
& =250 \mathrm{eV} \\
& \Rightarrow \frac{1242}{250} \mathrm{~nm} \cong 5 \mathrm{~nm} \text { (X- rays) }
\end{aligned}
$$

16. A radioactive nucleus (initial mass number A and atomic number Z) emits \qquad

Ans: $\frac{A-Z-4}{Z-8}$
Sol: $\quad Z^{A} \rightarrow Z-8 Y^{A-12}+3 \alpha+2 \beta^{+}$
No. of neutrons $=A-12-(Z-8)$

$$
\text { Ratio }=\frac{A-Z-4}{Z-8}
$$

17. Let there be a spherically symmetric charge distribution with charge -----

Ans: $\frac{\rho_{0} r}{4 \varepsilon_{0}}\left[\frac{5}{3}-\frac{r}{R}\right]$

Sol:

$$
\rho_{x}=\rho_{0}\left(\frac{5}{4}-\frac{x}{R}\right) 4 \pi x^{2} d x
$$

Total charge upto r is
$\rho_{r}=\int_{0}^{r} \rho_{0}\left(\frac{5}{4}-\frac{x}{R}\right) 4 \pi x^{2} d x$
$=4 \pi \rho_{0} \int_{0}^{r}\left(\frac{5}{4}-\frac{x}{R}\right) x^{2} d x$
$=4 \pi \rho_{0}\left[\frac{5}{4}\left[\frac{x^{3}}{3}\right]_{0}^{r}-\left[\frac{x^{4}}{4 R}\right]_{0}^{r}\right]$
$=4 \pi \rho_{0}\left[\frac{5}{4} \frac{r^{3}}{3}-\frac{r^{4}}{4 \mathrm{R}}\right]$
Gauss's law is
E. $4 \pi r^{2}=\frac{4 \pi \rho_{0}}{\varepsilon_{0}}\left[\frac{5}{4} \frac{r^{3}}{3}-\frac{r^{4}}{4 R}\right]$
$\Rightarrow E=\frac{\rho_{0} r}{4 \varepsilon_{0}}\left[\frac{5}{3}-\frac{r}{R}\right]$
18. In a series LCR circuit $R=200 \Omega$ and the voltage and the frequency of the main supply ------

Ans: 242 W
Sol: Since the lag by removing the capacitance is equal to the lead by removing the inductor $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}}$.
The circuit is in resonance condition.
Power dissipated is $\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{(220)^{2}}{200}$
$=242 \mathrm{~W}$
19. In the circuit shown below, the key K is closed at $\mathrm{t}=0$.

Ans: $\frac{V}{R_{2}}$ at $t=0$ and $\frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$ at $t=\infty$
Sol: At the instant of switching on there is no current through L. Therefore current at $\mathrm{t}=0$ is $\frac{\mathrm{V}}{\mathrm{R}_{2}}$
At $t=\infty, \mathrm{V}_{\mathrm{L}}=0$
$R_{\text {eff }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \Rightarrow I=\frac{V\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$
20. A particle is moving with velocity

Ans: $y^{2}=x^{2}+$ constant
Sol: $\quad \bar{v}=K(y \hat{i}+x \hat{j})$
$\frac{d \bar{r}}{d t}=K y \hat{i}+K x \hat{j}$
$\Rightarrow \bar{r}=K y t \hat{i}+K x t \hat{j}+C$
$\Rightarrow \mathrm{r}^{2}=\mathrm{K}^{2} \mathrm{y}^{2} \mathrm{t}^{2}+\mathrm{K}^{2} \mathrm{x}^{2} \mathrm{t}^{2}+$ constant $\left(x^{2}+y^{2}\right)=K^{2} y^{2} t^{2}+K^{2} x^{2} t^{2}+$ constant
$y^{2}\left[1-K^{2} t^{2}\right]=x^{2}\left[K^{2} t^{2}-1\right]+$ constant
$y^{2}=\frac{x^{2}\left[K^{2} t^{2}-1\right]}{\left[1-K^{2} t^{2}\right]}+$ constant
$=-x^{2}+$ current $=x^{2}+$ constant
$\therefore \mathrm{y}^{2}=\mathrm{x}^{2}+$ constant
21. Let C be the capacitance of a capacitor discharging through ------

Ans: $\frac{1}{2}$
Sol: $\quad Q=R_{0} e^{-t / R C}$

$$
\begin{aligned}
& \frac{Q_{1}{ }^{2}}{2 C}=\frac{Q_{0}{ }^{2}}{2 C} \cdot \frac{1}{2} \\
& \Rightarrow Q_{1}=\frac{Q_{0}}{\sqrt{2}} \\
& \therefore \frac{Q_{0}}{\sqrt{2}}=Q_{0} \cdot e^{-t_{1} / \tau} \\
& \frac{1}{\sqrt{2}}=e^{-t_{1} / \tau} \\
& \sqrt{2}=e^{t_{1} / \tau} \ln \sqrt{2}=\frac{t_{1}}{\tau}
\end{aligned}
$$

$$
\frac{Q_{2}^{2}}{2 C}=\frac{Q_{0}^{2}}{2 C} \cdot \frac{1}{4}
$$

$$
Q_{2}=\frac{Q_{0}}{2}
$$

$$
\therefore \frac{\mathrm{Q}_{0}}{2}=\mathrm{Q}_{0} \mathrm{e}^{-\mathrm{t}_{2} / \tau_{1}}
$$

$$
2=\mathrm{e}^{\mathrm{t}_{2} / \tau}
$$

$$
\ln 2=\frac{t_{2}}{\tau}
$$

$$
\therefore \frac{t_{1}}{t_{2}}=\frac{\ln \sqrt{2}}{\ln 2}=\frac{1}{2}
$$

22. A rectangular loop has a sliding connector PQ of length ℓ and -----

Ans:

$$
\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{\mathrm{B} \lambda v}{3 \mathrm{R}}, \mathrm{I}=\frac{2 \mathrm{~B} \lambda v}{3 \mathrm{R}}
$$

Sol: Motional emf, $\&=$ Blv
$R_{\text {effective }}$ (external) $=R \| R=\frac{R}{2}$
Internal resistance $=R$
Total resistance $=R+\frac{R}{2}=\frac{3 R}{2}$
$\therefore \mathrm{I}=\frac{\varepsilon}{\left(\frac{3 \mathrm{R}}{2}\right)}=\frac{2 \varepsilon}{3 \mathrm{R}}=\frac{2 \mathrm{~B} \lambda v}{3 \mathrm{R}}$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{\mathrm{I}}{2}=\frac{\mathrm{B} \lambda \mathrm{v}}{3 \mathrm{R}}$

Aliter

IR + $\mathrm{I}_{1} \mathrm{R}=\mathrm{Blv}$---- (i)
IR $+I_{2} R=B l v----(i i)$
(i) - (ii) $\Rightarrow \mathrm{I}_{1} \mathrm{R}-\mathrm{I}_{2} \mathrm{R}=0 \Rightarrow \mathrm{I}_{1}=\mathrm{I}_{2}$
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=2 \mathrm{I}_{2}$
\therefore (ii) $\Rightarrow 3 I_{2} R=B l v$
$\Rightarrow \mathrm{I}_{2}=\frac{\mathrm{B} \lambda v}{3 \mathrm{R}}$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\frac{\mathrm{B} \lambda \mathrm{v}}{3 \mathrm{R}} ; \mathrm{I}=\frac{2 \mathrm{~B} \lambda \mathrm{v}}{3 \mathrm{R}}$
23. The equation of a wave on a string of linear mass density 0.04

Ans: 6.25 N
Sol: $y=0.02 \sin \left[\frac{2 \pi t}{0.04}-\frac{2 \pi x}{0.50}\right]$
Compare with $\mathrm{y}=\mathrm{A} \sin (\omega \mathrm{t}-\mathrm{kx})$
$\Rightarrow \omega=\frac{2 \pi}{0.04}$ and $\mathrm{k}=\frac{2 \pi}{0.50}$
$\therefore \mathrm{v}=\frac{\omega}{\mathrm{k}}=\frac{0.5}{0.04}=12.5 \mathrm{~m} \mathrm{~s}^{-1}$
But $v=\sqrt{\frac{T}{\mu}} \Rightarrow T=v^{2} \mu$
$\therefore \mathrm{T}=(12.5)^{2} \times 0.04$
$=6.25 \mathrm{~N}$
24. Two fixed frictionless inclined planes making an angle \qquad
Ans: Zero
Sol: Vertical acceleration of A and B are g. Hence relative vertical acceleration of A w.r.t B is zero.
25. For a particle in uniform circular motion, the acceleration -----

Ans: $-\frac{V^{2}}{R} \cos \theta \hat{i}-\frac{V^{2}}{R} \sin \theta \hat{j}$

Sol:

$$
\begin{aligned}
& a_{c}=\frac{V^{2}}{R} \\
& \left(a_{c}\right) x=-\frac{V^{2}}{R} \cos \theta \hat{i} \\
& \left(a_{c}\right) Y=-\frac{v^{2}}{R} \sin \theta \hat{j} \\
& \therefore \bar{a}_{c}=-\frac{V^{2}}{R} \cos \theta \hat{i}-\frac{v^{2}}{R} \sin \theta \hat{j}
\end{aligned}
$$

26. A small particle of mass m is projected at an angle θ-----

Ans: $-\frac{m v_{0} g t^{2}}{2} \cos \theta \hat{k}$
Sol: $\bar{L}=\bar{r} \times \bar{p} \Rightarrow \bar{L}$ is in the $-\hat{k}$ direction

$$
\bar{x}=t v_{0} \cos \theta \hat{i}
$$

$$
\bar{y}=\left[\operatorname{tv}_{0} \sin \theta-\frac{1}{2} g t^{2}\right] \hat{j}
$$

$$
\bar{r}=v_{0} t \cos \theta \hat{i}+t\left(v_{0} \sin \theta-\frac{g t}{2}\right) \hat{j}
$$

$$
\bar{v}=v_{x} \hat{i}+v_{y} \hat{j}
$$

$$
=v_{0} \cos \theta \hat{i}+\left(v_{0} \sin \theta-g t\right) \hat{j}
$$

$$
\bar{p}=m v=m v_{0} \cos \theta \hat{i}+m\left(v_{0} \sin \theta-g t\right) \hat{j}
$$

$$
\overline{\mathrm{L}}=\overline{\mathrm{r}} \times \overline{\mathrm{p}}
$$

$$
=\left[v_{0} t \cos \theta \hat{i}+t\left(v_{0} \sin \theta-\frac{g t}{2}\right) \hat{j}\right] \times
$$

$\left[m v_{0} \cos \theta \hat{i}+m\left(v_{0} \sin \theta-g t\right) \hat{j}\right]$
$m v_{0} t \cos \theta\left(v_{0} \sin \theta-g t\right) \hat{k}-t m v_{0} \cos \theta\left[v_{0} \sin \theta-\frac{g t}{2}\right] \hat{k}$

$$
\begin{aligned}
& =\left[m v_{0}^{2} t \sin \theta \cos \theta-m v_{0} g t^{2} \cos \theta \hat{k}\right. \\
& -\left[m v_{0}^{2} t \sin \theta \cos \theta-\frac{m v_{0} g t^{2}}{2}\right] \hat{k} \\
& =-\frac{m v_{0} g t^{2}}{2} \cos \theta \hat{k}
\end{aligned}
$$

27. Two identical charged spheres are suspended by strings of

Ans: 2
Sol:

$l \sin 15^{\circ}=\frac{q^{2}}{4 \pi \varepsilon_{0} \mathrm{~d}^{2}}$
$\ell \cos 15^{\circ}=\mathrm{mg}$
$\tan 15^{\circ}=\frac{q^{2}}{\mathrm{mg} \mathrm{d}^{2} 4 \pi \varepsilon_{0}} \quad----$ (i)
In liquid $g^{\prime}=g\left[1-\frac{\sigma}{\rho}\right]=g\left[1-\frac{0.8}{1.6}\right]=\frac{g}{2}$
$\varepsilon=\varepsilon_{0} \mathrm{~K}$
Again $\tan 15^{\circ}$
$=\frac{q^{2}}{m g g^{\prime} d^{2} 4 \pi \varepsilon}=\frac{2 q^{2}}{m g d^{2} 4 \pi \varepsilon_{0} K}$
From (i) and (ii) $\frac{2 q^{2}}{4 \pi \varepsilon_{0} \mathrm{Kmgd}^{2}}=\frac{\mathrm{q}^{2}}{\mathrm{mgd}^{2} 4 \pi \varepsilon_{0}}$
$\Rightarrow \frac{2}{\mathrm{~K}}=1 \Rightarrow \mathrm{~K}=2$
28. A point P moves in counter-clockwise direction on a circular path as shown --

Ans:
Sol: $\quad S=t^{3}+s$
Speed $v=\frac{d s}{d t}=3 t^{2}$
At $t=2 \mathrm{~s}, \mathrm{v}=12 \mathrm{~m} \mathrm{~s}^{-1}$
$a_{c}=\frac{v^{2}}{r}=\frac{(12)^{2}}{20}=7.2 \mathrm{~m} \mathrm{~s}^{-2}$
Tangential acceleration,
$a_{t}=\frac{d v}{d t}=6 t$
At $\mathrm{t}=2 \mathrm{~s}, \mathrm{a}_{\mathrm{t}}=6 \times 2=12 \mathrm{~m} \mathrm{~s}^{-2}$
$\therefore \mathrm{a}=\sqrt{\mathrm{a}_{\mathrm{c}}{ }^{2}+\mathrm{a}_{\mathrm{t}}{ }^{2}}=\sqrt{(7.2)^{2}+(12)^{2}}$
$=\sqrt{51.84+144}$
$=\sqrt{195.84}$
$\cong 14 \mathrm{~m} \mathrm{~s}^{-2}$
29. The potential energy function for the force between two atoms -----

Ans: $0-\left(-\frac{b^{2}}{4 a}\right)=\frac{b^{2}}{4 a}$
Sol: $\quad U_{(x)}=\frac{a}{x^{12}}-\frac{b}{x^{6}}$
$F=-\frac{d U_{(x)}}{d x}=-\left[-12 a x^{-13}+6 b x^{-7}\right]$
$=12 a x^{-13}-6 b^{-7}$
At equilibrium, $F=0 \Rightarrow 0$
$=12 a x^{-13}-6 b x^{-7}$
$\therefore 12 \mathrm{ax}^{-13}=6 \mathrm{bx}^{-7}$
$1=\frac{6}{12} \frac{b}{a} \cdot \frac{x^{-7}}{x^{-13}}$
$=\frac{\mathrm{b}}{2 \mathrm{a}} \cdot \mathrm{x}^{6}$
$\therefore x=\left(\frac{2 a}{b}\right)^{1 / 6}$ at equilibrium
$U_{(x)}=\infty=0$
$U_{\text {at equilibrium }}=\frac{a}{\left(\frac{2 a}{b}\right)^{12 / 6}}-\frac{b}{\left(\frac{2 a}{b}\right)^{6 / 6}}$
$=\frac{a b^{2}}{4 a^{2}}-\frac{b^{2}}{2 a}=-\frac{b^{2}}{4 a}$
$\therefore \mathrm{D}=0-\left(-\frac{\mathrm{b}^{2}}{4 \mathrm{a}}\right)=\frac{\mathrm{b}^{2}}{4 \mathrm{a}}$
30. Two conductors have the same resistance at $0^{\circ} \mathrm{C}$ but their temperature

Ans:
Sol: In series
$R_{0}=R_{1}+R_{2}$
$R_{t}=R_{1}{ }^{\prime}+R_{2}{ }^{\prime}$
$=R_{1}+R_{1} \alpha_{1} t+R_{2}+R_{2} \alpha_{2} t$
$=\left(R_{1}+R_{2}\right)+t\left[R_{1} \alpha_{1}+R_{2} \alpha_{2}\right]$
But $R_{t}=R_{0}+R_{0} \alpha t$
$=\left(R_{1}+R_{2}\right)+\left(R_{1}+R_{2}\right) \alpha t$
From (i) \& (ii)
$\alpha=\frac{\left(R_{1} \alpha_{1}+R_{2} \alpha_{2}\right)}{\left(R_{1}+R_{2}\right)}$

$$
=\frac{\alpha_{1}+\alpha_{2}}{2}\left(\Theta R_{1}=R_{2}\right)
$$

In parallel
$R_{0}=\frac{R}{2}$
$R_{t}=\frac{R\left[1+\alpha_{1} t\right] R\left[1+\alpha_{2} t\right]}{R\left\{\left[1+\alpha_{1} t\right]+\left[1+\alpha_{2} t\right]\right\}}$
$=\frac{R\left(1+\alpha_{1} t\right)\left(1+\alpha_{2} t\right)}{\left[2+\alpha_{1} t+\alpha_{2} t\right]}$
But $R_{t}=\frac{R}{2}[1+\alpha t]$--- (ii)
From (i) \& (ii) $(1+\alpha$ t)
$=\frac{2\left[1+\alpha_{1} t\right]\left(1+\alpha_{2} t\right)}{\left[2+\alpha_{1} t+\alpha_{2} t\right]}$
$\alpha t=\frac{2\left[1+\alpha_{1} t+\alpha_{2} t+\alpha_{1} \alpha_{2} t^{2}\right\rfloor}{\left[2+\alpha_{1} t+\alpha_{2} t\right]}-1$
$=\frac{\alpha_{1} t+\alpha_{2} t+\alpha_{1} \alpha_{2} t^{2}}{\left(2+\alpha_{1} t+\alpha_{2} t\right)}$
$=\frac{t\left(\alpha_{1}+\alpha_{2}+\alpha_{1} \alpha_{2} t\right)}{2+\left(\alpha_{1}+\alpha_{2}\right) t}$
$\Rightarrow \alpha=\frac{\alpha_{1}+\alpha_{2}+\alpha_{1} \alpha_{2} t}{2+\left(\alpha_{1}+\alpha_{2}\right) t} ;$ At $t=0$,
$\alpha=\frac{\alpha_{1}+\alpha_{2}}{2}$

PART B - CHEMISTRY

31. In aqueous solution the ionization constants

Ans: The concentration of H^{+}and HCO_{3}^{-}are approximately equal.

Sol : $\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
$\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}$
Since the k_{2} value is very low compared to that of k_{1}, the H^{+}obtainable from HCO_{3}^{-}is negligibly small.
32. Solubility product of silver bromide is 5.0×10^{-13}

Ans : $1.2 \times 10^{-9} \mathrm{~g}$
Sol: $\mathrm{k}_{\text {sp }}(\mathrm{AgBr})=\left[\mathrm{Ag}^{+}\right][\mathrm{Br}]$
$\left[\mathrm{Br}^{-}\right]=\frac{5 \times 10^{-13}}{0.05}=1 \times 10^{-11}$ moles $/ \mathrm{L}$
\therefore No. of moles of $\mathrm{KBr}=10^{-11}$
Wt of $\mathrm{KBr}=120 \times 10^{-11}=1.2 \times 10^{-9} \mathrm{~g}$
33. The correct sequence which shows decreasing order of \qquad

Ans: $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Al}^{3+}$

Sol: For isoelectronic species the radii decreases with increase in atomic number.
34. In the chemical reactions,

Ans : benzene diazonium chloride and fluorobenzene

Sol:

(A)

35. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 \mathrm{dm}^{3}$ flask at 300 K , \qquad

Ans : $1.27 \times 10^{-3} \mathrm{~mol}$

$$
\begin{aligned}
& \text { Sol : } \mathrm{PV}=\mathrm{nRT} \\
& \begin{aligned}
\mathrm{n} & =\frac{3170(\mathrm{~Pa}) \times 1 \times 10^{-3}\left(\mathrm{~m}^{3}\right)}{8.314\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \times 300(\mathrm{~K})} \\
& =1.27 \times 10^{-3} \mathrm{~mol}
\end{aligned}
\end{aligned}
$$

36. From amongst the following alcohols the one that would react fastest with.

Ans : 2-Methylpropan-2-ol

Sol:

Order of reactivity of alcohols with con. $\mathrm{HCl} / \mathrm{ZnCl}_{2}$ (Lucas reagent) is $3^{\circ}>2^{\circ}>1^{\circ}$
37. If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change \qquad

Ans: 0.0558 K

$$
\text { Sol : } \begin{aligned}
\Delta \mathrm{T}_{f} & =\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m} \\
& =3 \times 1.86 \times 0.01 \\
& =0.0558 \mathrm{~K}
\end{aligned}
$$

38. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below: \qquad

Ans: (ii) only

Sol: $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as H^{+}donor in reaction (ii).
39. The main product of the following reaction is

Ans:

Sol:

(2° carbocation)
$\xrightarrow{1,2-\text { migration }}$
of hydride ion

(more stable
2° benzylic carbocation)

40. The energy required to break one mole of $\mathrm{Cl}-\mathrm{Cl}$ bonds in Cl_{2} is $242 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Ans : 494 nm

Sol : $E=\frac{242 \times 10^{3}}{6.02 \times 10^{23}} \mathrm{~J}$ molecule ${ }^{-1}$

$$
E=\frac{h \times c}{\lambda}
$$

$\therefore \lambda$
$=\frac{6.626 \times 10^{-34}(\mathrm{Js}) \times 3 \times 10^{8}\left(\mathrm{~ms}^{-1}\right)}{\left(\frac{242 \times 10^{3}}{6.02 \times 10^{23}}\right)\left(\mathrm{Jmolecule}^{-1}\right)}$

$$
=0.494 \times 10^{-6} \mathrm{~m}
$$

$$
=494 \mathrm{~nm}
$$

41. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method \qquad

Ans : 23.7

Sol : \% of $N=\frac{14 \times\left(V_{1}-V_{2}\right) N_{1} \times 100}{w \times 1000}$

$$
=\frac{14 \times(20-15) \times 0.1 \times 100}{0.0295 \times 1000}=23.7
$$

42. Ionisation energy of $\mathrm{He}+$ is $19.6 \times 10^{-18} \mathrm{~J}^{\text {atom }}{ }^{-1}$. The energy \qquad

Ans: $-4.41 \times 10^{-17} \mathrm{~J}^{2}$ atom $^{-1}$

Sol: $E \alpha \frac{z^{2}}{n^{2}}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{Li}^{2+}} & =\frac{9}{4} \times \mathrm{E}_{\mathrm{He}^{+}} \\
& =\frac{9}{4} \times-19.6 \times 10^{-18} \mathrm{~J} \text { atom }^{-1} \\
& =-4.41 \times 10^{-17} \mathrm{~J} \text { atom }
\end{aligned}
$$

43. On mixing, heptane and octane form an ideal solution. At 373 K , the vapour pressures \qquad

Ans : 72.0 kPa

$$
\text { Sol : } \begin{aligned}
\mathrm{n}_{\mathrm{A}} & =\frac{25}{100}=0.25 \\
\mathrm{n}_{\mathrm{B}} & =\frac{35}{114}=0.31 \\
\mathrm{x}_{\mathrm{A}} & =\frac{0.25}{0.56}=0.45 \\
\mathrm{p} & =\mathrm{p}_{\mathrm{A}}^{0} \cdot \mathrm{x}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}^{0} \cdot \mathrm{x}_{\mathrm{B}} \\
& =105 \times 0.45+45 \times 0.55 \\
& =72 \mathrm{kPa}
\end{aligned}
$$

44. Which one of the following has an optical isomer?

Ans: $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
Sol: $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is chiral.
45. Consider the following bromides: \qquad

Ans: $B>C>A$

Sol: Order of $\mathrm{S}_{\mathrm{N}} 1$ reactivity is related to the relative stability of carbocation formed by ionisation (B) gives allylic secondary carbocation, (C) gives secondary carbocation and (A) gives primary carbocation on ionisation.
46. One mole of a symmetrical alkene on ozonolysis gives two moles of an aldehyde \qquad

Ans: 2-butene

Sol :

Molecular mass : 44 u
47. Consider the reaction:
$\mathrm{Cl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$

Ans: A only

Sol : Slow step is the rate determining step.
According to A ; rate $=\mathrm{K}\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
According to B ; rate $=\frac{\mathrm{K}\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{H}^{+}\right]}$
48. The Gibbs energy for the decomposition of $\mathrm{Al}_{2} \mathrm{O}_{3}$ at $500^{\circ} \mathrm{C}$ is as follows: \qquad

Ans : 2.5 V
Sol : $\Delta \mathrm{G}=-\mathrm{nFE}$

$$
\frac{3}{2} \times 966 \times 10^{3}(\mathrm{~J})=6 \times 96500 \times \mathrm{E}
$$

$$
\mathrm{E}=2.5 \mathrm{~V}
$$

49. The correct order of increasing basicity of the given conjugate bases

Ans: $\mathrm{RCO} \overline{\mathrm{O}}<\mathrm{HC} \equiv \overline{\mathrm{C}}<\overline{\mathrm{N}} \mathrm{H}_{2}<\overline{\mathrm{R}}$

Sol: Acidic strength of the corresponding conjugate acid is $\mathrm{CH}_{3}-\mathrm{COOH}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{NH}_{3}>\mathrm{CH}_{4}$ Hence the basicity of the conjugate base must be the reverse.
50. The edge length of a face centered cubic cell of an anionic substance is 508 pm .

Ans : 144 pm
Sol : $2\left(r_{(+)}+r_{(-)}\right)=a$
$r_{(+)}+r_{(-)}=\frac{508}{2}=254$
$r_{(-)}=254-110=144 \mathrm{pm}$
51. Out of the following, the alkene that exhibits optical isomerism is \qquad

Ans: 3-methyl-1-pentene

Sol :

3-Methyl-1-pentene It contains a chiral carbon atom.
52. For a particular reversible reaction at temperature $\mathrm{T}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ were found to be
\qquad

Ans: $\mathrm{T}>\mathrm{T}_{\mathrm{e}}$

Sol : At equilibrium, $\Delta H=T_{e} \Delta S$
$\therefore \Delta G=\Delta H-T \Delta S$ $=\Delta S\left(T_{e}-T\right)$
ΔG will be negative when $T>T_{e}$.
53. Percentages of free space in cubic close packed structure and in body centered \qquad

Ans : 26\% and 32\%

Sol: For ccp and bcc percentages of free space are 26% and 32% respectively.
54. The polymer containing strong intermolecular forces e.g. hydrogen bonding \qquad

Ans : nylon-6, 6
Sol : Nylon-6,6 is a fibre having strong intermolecular forces due to hydrogen bonding.
55. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0×10^{-11}. At which pH , will Mg^{2+} ions start precipitating

Ans: 10
Sol:: $k_{s p\left[M g(O H)_{2}\right]}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\therefore\left[\mathrm{OH}^{-}\right]^{2}=\frac{10^{-11}}{10^{-3}}=10^{-8}$
$\left[\mathrm{OH}^{-}\right]=10^{-4}$
$\mathrm{pOH}=4$
$\mathrm{pH}=10$
56. The correct order of $E_{M^{2+} / M}^{0}$ values with negative sign for the four successive elements \qquad
Ans: $\mathrm{Mn}>\mathrm{Cr}>\mathrm{Fe}>\mathrm{Co}$
Sol: $\mathrm{Mn}>\mathrm{Cr}>\mathrm{Fe}>\mathrm{Co}$
Standard reduction potential values of
$\mathrm{Mn}^{2+} / \mathrm{Mn}=-1.18 \mathrm{~V}$
$\mathrm{Cr}^{2+} / \mathrm{Cr}=-0.91 \mathrm{~V}$
$\mathrm{Fe}^{2+} / \mathrm{Fe}=-0.44 \mathrm{~V}$
$\mathrm{Co}^{2+} / \mathrm{Co}=-0.28 \mathrm{~V}$
57. Biuret test is not given by \qquad

Ans: carbohydrates
Sol : Biuret test is not answered by carbohydrates.
58. The time for half life period of a certain reaction $\mathrm{A} \rightarrow$ Products is 1 hour. When the initial concentration of the reactant ' A ', \qquad

Ans : 0.25 h

Sol: For a zero order reaction, $\mathrm{t}_{1 / 2} \alpha \mathrm{a}$
$2.0 \mathrm{~mol} \mathrm{~L}^{-1} \rightarrow 1.0 \mathrm{~mol} \mathrm{~L}^{-1} ; \mathrm{t}_{1 / 2}=1$ hour
$0.5 \mathrm{~mol} \mathrm{~L}^{-1} \rightarrow 0.25 \mathrm{~mol} \mathrm{~L}^{-1}$;

$$
\mathrm{t}_{1 / 2}=0.25 \text { hour }
$$

59. A solution containing 2.675 g of $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ (molar mass $=267.5 \mathrm{~g} \mathrm{~mol}^{-1}$) is passed through a cation exchanger.

Ans: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
Sol : No. of moles of $\mathrm{AgCl}=\frac{4.78}{143.5} \cong 0.03$
i.e., 0.01 moles of the compound gives 0.03 moles of AgCl
\therefore No. of moles of Cl^{-}per unit $=3$
\therefore Formula of the complex is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
60. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of N_{2} is $-712 \mathrm{~kJ} \mathrm{~mol}^{-1}$. \qquad

Ans : $+352 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
\text { Sol : } & \mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
& 2 \times-46=+712+3 \times+436-(6 \times \mathrm{N}-\mathrm{H}) \\
& \mathrm{N}-\mathrm{H}=+352 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

PART - C -MATHEMATICS

61. Consider the following relations :
$R=\{(x, y) \mid x, y$ are real numbers and $\ldots .$.
Ans: S is an equivalence relation but R is not an equivalence relation.

Sol: $\quad x R_{y}=x=w y \Rightarrow x R_{x}$
$\therefore \mathrm{R}$ is reflexive
$x R_{y} \Rightarrow x=w y$ and $y R_{x} \Rightarrow y=w^{\prime} x$
where $w^{\prime}=\frac{1}{w}$, this is possible only
if $w \neq 0$
ie $x R_{0} \Rightarrow 0 R_{x}$ ie; R is not symmetric
$\therefore \mathrm{R}$ is not an equivalence relation.
$\frac{\mathrm{m}}{\mathrm{n}} \mathrm{S}_{\frac{\mathrm{p}}{\mathrm{q}}} \Rightarrow \mathrm{mq}=\mathrm{pn}$
$\therefore \frac{m}{n} S_{\frac{m}{n}}$ exists by the definition so S is reflexive.
$\frac{\mathrm{m}}{\mathrm{n}} \mathrm{S}_{\frac{\mathrm{p}}{\mathrm{q}}} \Rightarrow \mathrm{mq}=\mathrm{pn} \Rightarrow \mathrm{pn}=\mathrm{mq} \Rightarrow{ }_{\frac{\mathrm{p}}{\mathrm{q}}} \mathrm{S}_{\mathrm{m}}^{\mathrm{n}}$
$\therefore \mathrm{S}$ is symmetric.
Again, $\frac{m}{n} S_{\frac{p}{q}}, \frac{p}{q} S_{\frac{r}{s}} \Rightarrow m q=p n$ and $p s=q r$
ie; mq.ps $=p n . q r \Rightarrow m s=n r \Rightarrow \frac{m}{n} \frac{r}{s}$
$\therefore \mathrm{S}$ is transitive
$\therefore \mathrm{S}$ is an equivalence relation but is not an equivalence relation.
62. The number of complex numbers z such that $|z-1|=|z+1|=$ \qquad
Ans: 1
Sol: $\quad z$ is a point equidistant from 3 given points.
$\therefore z$ is the centre of the circle passing through 1, -1 , i .
63. If α and B are the roots of the equation
$x^{2}-x+1=0$,
Ans: 1

$$
\text { Sol: } \quad-\omega-\omega^{2}
$$

$$
\begin{aligned}
\alpha^{2009} & =(-\omega)^{2009} \\
& =-\omega^{2007} \cdot \omega^{2} \\
& =-\omega^{2} \\
\beta^{2009} & =\left(-\omega^{2}\right)^{2009} \\
& =-\omega^{4018} \\
& =-\omega^{4017} \times \omega \\
& =-\omega \\
-\omega^{2}- & \omega=-\left(\omega^{2}+\omega\right)=1 .
\end{aligned}
$$

64. Consider the system of linear equations :
$x_{1}+2 x_{2}+x_{3}=3$
$2 x_{1}+3 x_{2}+x_{3}=3$

Ans: No solution.
Sol: $\quad A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2\end{array}\right] \Rightarrow|A|=0$
$A x_{1}=\left[\begin{array}{lll}3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 5 & 2\end{array}\right] \Rightarrow\left|A x_{1}\right| \neq 0$.
\therefore The given system has no solutions.
65. There are two urns. Urn A has 3 distinct red balls \qquad
Ans: 108
Sol: $\quad \mathrm{A} \Rightarrow 3$ distinct red balls
$\mathrm{B} \Rightarrow 9$ distinct blue balls
${ }^{3} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{2}=3 \times 36=108$.
66. Let $\mathrm{f}:(-1,1) \rightarrow \mathbf{R}$ be a differentiable function with \qquad
Ans: -4
Sol: $\quad g(x)=[f(2 f(x)+2)]^{2}$

$$
\begin{aligned}
g^{\prime}(x) & =2 f(2 f(x)+2) \times 2 f^{\prime}(x) \\
g^{\prime}(0) & =2 f(2 f(0)+2) \times 2 f^{\prime}(0) \\
& =4 \times 1 \times f(2-2) \\
& =4 f(0) \\
& =-4 .
\end{aligned}
$$

67. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be a positive increasing function with $\lim _{x \rightarrow \infty} \frac{f(3 x)}{f(x)}=1 \ldots$.

Ans: 1
Sol: Given $\operatorname{Lim}_{x \rightarrow \infty} \frac{f(3 x)}{f(x)}=1$
since $f(x)$ is an increasing function
$\operatorname{Lim}_{x \rightarrow \infty} \frac{f(2 x)}{f(x)}$ is also equal to 1 .
68. Let $p(x)$ be a function defined on R such that $p^{\prime}(x)=p^{\prime}(1-x), \ldots \ldots$.

Ans: 21
Sol: $\quad f(x)=p(x)+p(1-x)$

$$
f^{\prime}(x)=p^{\prime}(x)-p^{\prime}(1-x)=0 \text { (given) }
$$

$$
\therefore f^{\prime}(x)=0
$$

$$
\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{k} \text { constant }
$$

$$
\text { when } x=0, p(0)+p(1) \Rightarrow k=42
$$

$$
p(x)+p(1-x)=42
$$

$$
\therefore \int_{0}^{1} p(x) d x+\int_{0}^{1} p(1-x)=42
$$

$$
\therefore 2 \int_{0}^{1} \mathrm{p}(\mathrm{x}) \mathrm{dx}=42
$$

$$
\therefore \int_{0}^{1} p(x) d x=21 \text {. }
$$

69. A person is to count 4500 currency notes.

Ans: 34 minutes
Sol: In the first 9 minutes the person counts $9 \times 150=1350$ notes
Total left notes $=4500-1350$

$$
=3150
$$

He counts in A.P with $d=(-2)$ and $\mathrm{a}=150$

$$
\begin{aligned}
& \therefore 3150=\frac{n}{2}[300+(n-1)(-2)] \\
& \quad=\mathrm{n}[150-\mathrm{n}+1] \\
& 3150=151 \mathrm{n}-\mathrm{n}^{2} \\
& \therefore \mathrm{n}^{2}-151 \mathrm{n}+3150=0 \\
& \Rightarrow \mathrm{n}=\frac{252}{2} \text { or } \frac{50}{2} \\
& \\
& \mathrm{n}=25 \\
& \therefore \text { Total time }=25+9=34 \\
& =34 \text { mts. }
\end{aligned}
$$

70. The equation of the tangent to the curve
$y=x+\frac{4}{x^{2}}, \ldots \ldots$
Ans: $y=3$
Sol: $\quad y=x+\frac{4}{x^{2}}$
$\frac{d y}{d x}=0 \Rightarrow 1-\frac{8}{x^{3}}=0$
$\Rightarrow \mathrm{x}=2$
$\therefore \mathrm{y}=3$
\therefore Equation of tangent $\mathrm{y}=3$.
71. The area bounded by the curves $y=\cos x$ and $y=\sin x \ldots \ldots$

Ans: $\quad 4 \sqrt{2}-2$
Sol:

Required area $=$
$\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(\sin x-\cos x) d x$

$$
\begin{aligned}
& +\int_{\frac{5 \pi}{4}}^{\frac{5 \pi}{2}}(\cos x-\sin x) d x \\
= & \sqrt{2}-1+2 \sqrt{2}+\sqrt{2}-1 \\
= & 4 \sqrt{2}-2 .
\end{aligned}
$$

72. Solution of the differential equation $\cos x d y=y(\sin x-y) d x, \ldots \ldots$

Ans: $\quad \sec x=(\tan x+c) y$
Sol: Consider $d y=y(\sin x-y) d x$
consider $\frac{d y}{d x}=y \sin x-y^{2}$
$\frac{d y}{d x}=y \tan x-y^{2} \sec x$
$\frac{d y}{d x}-y \tan x=-y^{2} \sec x$
$\frac{-1}{y^{2}} \frac{d y}{d x}+\frac{1}{y} \tan x=\sec x$
$z=\frac{1}{y} \Rightarrow \frac{d z}{d x}=\frac{-1}{y^{2}} \frac{d y}{d x}$
$\therefore \frac{\mathrm{dz}}{\mathrm{dx}}+\mathrm{z} \tan \mathrm{x}=\sec \mathrm{x}$
\therefore I. F ${ }^{\text {logsecx }}=\sec x$
$\therefore \mathrm{z}^{\sec \mathrm{x}}=\int \sec ^{2} \mathrm{x}=\tan \mathrm{x}+\mathrm{C}$
$\frac{\sec x}{y}=\tan x+C$
$\therefore \sec \mathrm{x}=\mathrm{y}(\tan \mathrm{x}+\mathrm{C})$.
73. Let $\stackrel{\rho}{\mathrm{a}}=\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\stackrel{\varrho}{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}} \ldots \ldots$.

Ans: $\quad-\mathrm{i}+\mathrm{j}-2 \mathrm{k}$
Sol: $\quad(\mathrm{a} \times \mathrm{b})+\mathrm{c}=0$
$a \times(a \times b)+a \times c=0$
(a.b) $a-(a \cdot a) b+a \times c=0$
$3 j-3 k-2 b-2 i-j-k=0$
$\therefore 2 b=-2 i+2 j-4 k$
$\therefore \overline{\mathrm{b}}=-\mathrm{i}+\mathrm{j}-2 \mathrm{k}$
74. If the vectors $\hat{a}=\hat{i}-\hat{j}+2 \hat{k}$

Ans: $(-3,2)$

$$
\begin{aligned}
\text { Sol: } \quad & \overline{\mathrm{a}} . \overline{\mathrm{c}}=0 \\
& \Rightarrow \lambda-1+2 \mu=0 \\
& \Rightarrow \lambda+2 \mu=1----(1) \\
& \overline{\mathrm{b}} . \overline{\mathrm{c}}=0 \\
& \Rightarrow 2 \lambda+4+\mu=0 \\
& \therefore 2 \lambda+\mu=-4--(2) \\
& \therefore \text { Solving } \lambda=-3 \text { and } \mu=2
\end{aligned}
$$

75. If two tangents drawn from a point P to the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ are at right angles, \ldots.

Ans: $x=-1$
Sol: Locus of p is directrix of $y^{2}=4 x$

$$
\therefore \mathrm{x}=-1
$$

76. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes \qquad

Ans: 1
Sol: $\quad \frac{x}{5}+\frac{y}{b}=1$ passes through $(13,32)$

$$
\Rightarrow=-20
$$

\therefore Equation is $4 \mathrm{x}-\mathrm{y}=20$. It is parallel to $\frac{x}{c}+\frac{y}{3}=1$
$\therefore \mathrm{c}=\frac{-3}{4}$. ie; equation of line k becomes
$4 x-3 y=-3$.
\therefore The distance between them

$$
\begin{aligned}
& =\left|\frac{20-(-3)}{\sqrt{16+1}}\right| \\
& =\frac{23}{\sqrt{17}} .
\end{aligned}
$$

77. A line $A B$ in three-dimensional space makes.. \qquad
Ans: 60°
Sol: $\cos ^{2} 45+\cos ^{2} 120+\cos ^{2} \theta=1$
$\frac{1}{2}+\frac{1}{4}+\cos ^{2} \theta=1$
$\cos ^{2} \theta=1-\frac{3}{4}=\frac{1}{4}$
$\therefore \cos \theta=\frac{1}{2}$
$\therefore \theta=60^{\circ}$.
78. Let S be a non-empty subsets of R.

Ans: There is a rational number $x \in S$ such that $x \leq 0$.

Sol: The negation of the given statement is 'There is no rational number $x \in S$ such that $x>0$.' The equivalent statement is given above.
79. Let $\cos (\alpha+\beta)=\frac{4}{5}$ and

Ans: $\frac{56}{33}$
Sol: $\tan 2 \alpha=\tan (\alpha+\beta+\alpha-\beta)$

$$
\begin{aligned}
& =\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \tan (\alpha-\beta)} \\
& =\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}} \\
& =\frac{56}{33} .
\end{aligned}
$$

80. The circle $x^{2}+y^{2}=4 x+8 y+5 \ldots \ldots$

Ans: $-35<m<15$
Sol: Perpendicular distance from

$$
\begin{aligned}
& (2,4)<\text { Radius } \\
& \frac{|6-16-m|}{\sqrt{25}}<5 \\
& =\frac{|-10-m|}{5}<5 \\
& =|10-m|<25
\end{aligned}
$$

$$
\begin{aligned}
& -25<10+m<25 \\
& -35<m<15 .
\end{aligned}
$$

81. For two data sets, each of size $5 \ldots .$.

Ans: $\frac{11}{2}$
Sol: $\quad \sigma^{2}=\frac{n_{1} \sigma_{1}{ }^{2}+n_{2} \sigma_{2}{ }^{2}+n_{1} d_{1}{ }^{2}+n_{2} d_{2}{ }^{2}}{n_{1}+n_{2}}$,

$$
\bar{x}=\frac{n_{1} \overline{x_{1}}+n_{2} \overline{x_{2}}}{n_{1}+n_{2}}
$$

since $\mathrm{n}_{1}=\mathrm{n}_{2}$ we get

$$
\begin{array}{ll}
\sigma^{2}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}+d_{1}^{2}+d_{2}^{2}}{2} & \bar{x}=\frac{\bar{x}_{1}+\bar{x}_{2}}{2} \\
d_{1}^{2}=(2-3)^{2}=1 & \bar{x}=\frac{2+4}{2}=3 \\
d_{2}^{2}=(4-3)^{2}=1 & \\
\therefore \sigma^{2}=\frac{4+5+1+1}{2}=\frac{11}{2} . &
\end{array}
$$

82. An urn contains nine balls of which.

Ans: $\frac{2}{7}$
Sol: Three balls without replacement can be done in $=\frac{3 \times 4 \times 2}{{ }^{9} \mathrm{C}_{3}}$

$$
=\frac{2}{7}
$$

83. For a regular polygon, let r and R be the.

Ans: There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$
Sol: Let n sided regular polygon is inscribed in a circle. From the figure it is clear that

$\therefore \cos \left(\frac{\pi}{n}\right)=\frac{r}{R}$
There an possible integer value
corresponding to $\frac{1}{2}, \frac{1}{\sqrt{2}}$ and $\frac{\sqrt{3}}{2}$
But $\cos \theta=\frac{2}{3} \Rightarrow \frac{\pi}{4}=\cos ^{-1}\left(\frac{2}{3}\right)$
$\Rightarrow \mathrm{n}$ is not an integer.
84. The number of 3×3 non-singular matrices.....

Ans: at least 7
Sol: Consider $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. The 1 on the non diagonal position can be shifted to 5 more positions. Further we can consider $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) . \therefore$ at least 7 matrices are there.
85. Let $f: R \rightarrow R$ be defined by......

Ans: -1
Sol: Since function has local minimum it must be continuous at $x=-1$

$$
\begin{aligned}
& \therefore \operatorname{Lim}_{x \rightarrow-1^{+}} f(x)=\operatorname{Lim}_{x \rightarrow-1^{-}} f(x) \\
& 1=k+2 \\
& \therefore k=-1 .
\end{aligned}
$$

86. Four numbers are chosen at random.

Ans: Statement 1 is true, Statement 2 is false.
Sol: If four chosen numbers form an AP, the common differences can be $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ or ± 6. (e.g. 1, 7, 13, 19 is an AP with common difference 6)

\therefore Statement 2 is not true.

87. Let $S_{1}=\sum_{j=1}^{10} j(j-1)^{10} C_{j}, S_{2}=\sum_{j=1}^{10} j^{10} C_{j} \ldots$.

Ans: Statement 1 is true, Statement 2 is false.
Sol: $\quad S_{1}=\sum_{j=1}^{10} j(j-1){ }^{10} C_{j}$

$$
\begin{aligned}
& S_{2}=\sum_{j=1}^{10} \mathrm{j}^{10} \mathrm{C}_{\mathrm{j}} \\
& \mathrm{~S}_{3}=\sum_{\mathrm{j}=1}^{10} \mathrm{j}^{2}{ }^{10} \mathrm{C}_{\mathrm{j}}
\end{aligned}
$$

$$
S_{1}-S_{3}=\sum_{j=1}^{10}\left(j^{2}-j-j^{2}\right) \times^{10} C_{j}
$$

$$
=-\sum_{\mathrm{j}=1}^{10} \mathrm{j}^{10} \mathrm{C}_{\mathrm{j}}
$$

$$
=-S_{2}
$$

$S_{1}+S_{2}=S_{3}$.
$\frac{10!}{j!(10-j)!} j(j-1)$
$\frac{10!}{(j-2)!(10-j)!}=9 \times 10 \times \frac{8!}{(j-2)!(10-j)!}$

$$
\begin{gathered}
\sum_{j=1}^{10} j(j-1)^{10} C_{j}=90 \sum_{j=1}^{10}{ }^{8} C_{j-2} \\
=90 \times 2^{8} .
\end{gathered}
$$

88. Statement 1 : The point $A(3,1,6)$ is the mirror image. \qquad
Ans: Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for statement 1

Sol: $\quad \mathrm{A}(3,1,6)$
$B=(1,3,4)$
Midpoint of $A B$ is $(2,2,5)$
$2-2+5=5$
Statement 2 is true
D. R's of AB are [2, $-2,2$] or [1, $-1,1$]
\Rightarrow which represent the D.R's of normal to the plane $x-y+z=5$
\Rightarrow Statement 1 is true
We used statement 2 to prove statement 1.
89. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a continuous function.

Ans: Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for statement 1

Sol: $f(x)=\frac{1}{e^{x}+2 e^{-x}} \Rightarrow f(x)>0$

$$
f^{\prime}(x)=\frac{-1}{\left(e^{x}+2 e^{-x}\right)^{2}}\left[e^{x}-2 e^{-x}\right]
$$

$f^{\prime}(x)=0$
$\mathrm{e}^{\mathrm{x}}=\frac{2}{\mathrm{e}^{\mathrm{x}}}$
$\Rightarrow e^{2 x}=2 \Rightarrow x=\frac{1}{2} \log 2$
Checking the sign of $f^{\prime}(x)$ as x crosses
$\frac{1}{2} \log 2$, we note that $f(x)$ is maximum at
$x=\frac{1}{2} \log 2$.
Maximum value of $f(x)=\frac{1}{\sqrt{2}+2 \times \frac{1}{\sqrt{2}}}$

$$
=\frac{1}{2 \sqrt{2}}
$$

Statement 2 is true
$\frac{1}{2 \sqrt{2}}=\frac{\sqrt{2}}{4}=\frac{1.414}{4}=0.3535$
Since $f(x)$ is continuous in R,
$f(x)$ has to assume all values between 0 and 0.3535
Since $\frac{1}{3}$ is a number lying between o and 0.3535 , statement 1 is also true.
90. Let A be a 2×2 matrix with non-zero........

Ans: Statement 1 is false, Statement 2 is true.
Sol: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Given $|\mathrm{A}|=1$
$a d-b c=1----(1)$
$A^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{ll}a^{2}+b c & (a+d) b \\ (a+d) c & b c+d^{2}\end{array}\right)$
$\left.a^{2}+b c=1\right\}$
$d^{2}+b c=1$
$(a+d) b=0$
$(\mathrm{a}+\mathrm{d}) \mathrm{c}=0\}$
Case 1
$\mathrm{b}=0$ and $\mathrm{c}=0$
$\mathrm{A}=\left(\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{~d}\end{array}\right)$
Using (1)
$A=\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right)$
It is obvious that for a given A, Trace (a)
can be different from zero.
Therefore, statement 1 is not true.

OR

Take the 2×2 unit matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ as A.
$|A|=1$ and $A^{2}=1$
However, Trace $(A) \neq 0$
Statement 1 is not true

