SOLUTIONS & ANSWERS FOR AIEEE-2010 VERSION – A

[PHYSICS, CHEMISTRY & MATHEMATICS]

PART - A - PHYSICS

- 1. The initial shape of the wavefront of the ----
 - Ans: Planar
 - Sol: Initially parallel, cylindrical beam will have planar wavefront.
- 2. The speed of light in the medium is
 - Ans: Minimum on the axis of the beam
 - Sol:

wavefront

- 3. As the beam enters the medium ---
 - Ans: Diverge
 - Sol: From the above diagram the beam on coming out into the medium, diverges.
- 4. The speed of daughter nuclei ----

Ans:
$$c\sqrt{\frac{2\Delta m}{M}}$$

- Sol: Mass lost = (Δm) Energy released = (Δm)c² By conservation of momentum and energy each has energy $\frac{1}{2}\frac{M}{2}v^2$ $\therefore \frac{1}{2}\frac{M}{2}v^2 = \frac{1}{2}(\Delta m)c^2 \Rightarrow v = c\sqrt{\frac{2(\Delta m)}{M}}$
- 5. The binding energy per nucleon for the ------
 - Ans: $E_2 > E_1$
 - Sol: In radioactive decay, the parent nucleus decays to a more stable daughter nuclei. $\therefore E_2 > E_1$
- Statement 1 When ultraviolet light is incident on a photocell, its stopping potential -----

- Ans: Statement 1 is true, Statement-2 is false.
- Sol: hυ = KE_{max} + φ
 ∴ if hυ increases, KE_{m,ax} increases
 ∴ Stopping potential increases
 Photoelectrons have various speeds.
- Statement 1: Two particles moving in the same direction do not -----
 - Ans: Statement -1 is true, Statement 2 is true; Statement-2 is not the correct explanation of Statement-1
 - Sol: Statement 1 is true because the energy considered is not kinetic energy alone.
 Statement 1 is correct. Statement -2 is correct but not the explanation for
 Statement 1.
- The figure shows the position time (x t) graph of ---

Ans: 0.8 Ns

Sol: Impulse = change in momentum = $mv_2 - mv_1$ = $0.4 \times (-1) - 0.4 \times 1 = -0.8$ Ns

Two long parallel wires are at a distance 2d apart. They carry ------

Ans:

Hence graph (2) is correct.

10. A ball is made of a material of density ρ where -------

Ans:

- Sol: Since ρ_{water} is greater than $\rho_{\text{oil}},\,\rho_{\text{oil}}$ shoule be above water. $\rho > \rho_{\text{oil}}$ it should sink in oil and float in water. Hence Answer 3.
- 11. A thin semicircular ring of radius r has positive charge q ----

Taking symmetrical elements of charge as shown the sin θ components cancel out. The cos0 components add upto Triumphant

$$2\int_{0}^{\pi/2} \frac{K \, dq}{r^{2}} \cos \theta$$

= $2\int_{0}^{\pi/2} K \cdot \left(\frac{q}{\pi r}\right) r d\theta \frac{\cos \theta}{r^{2}}$
= $2 \cdot \frac{1}{4\pi\epsilon_{0}} \frac{q}{\pi r^{2}} \int_{0}^{\pi/2} \cos \theta d\theta$
= $-\frac{q}{2\pi^{2}\epsilon_{0} r^{2}} \hat{j}$

- 12. A diatomic ideal gas is used in a Carnot engine as the working substance ----
 - Ans: 0.75

Sol: In the adiabatic part of the cycle

$$T_1V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$$

 $= T_2 (32 V_1)^{\gamma-1}$
 $\therefore \frac{T_1}{T_2} = (32)^{\gamma-1} = (32)^{7/5-1} = (32)^{2/5}$
 $= 4 \Rightarrow T_1 = 4 T_2$
 $\eta = \frac{T_1 - T_2}{T_1} = \frac{3}{4} = 0.75$

13. The respective number of significant figures for the numbers -----

Ans: 5, 1, 2

14. The combination of gates shown below ------

Ans: OR gate

Sol:
$$\overline{\overline{A}.\overline{B}} = A + B$$

OR gate

15. If a source of power 4 kW produces 10²⁰ photons / second, the ----

Sol: Energy of a photon =
$$\frac{4000}{10^{20}}$$
 J
= $\frac{4000}{10^{20}} \times \frac{1}{1.6 \times 10^{-19}}$ eV
= 250 eV
 $\Rightarrow \frac{1242}{250}$ nm \cong 5 nm (X- rays)

16. A radioactive nucleus (initial mass number A and atomic number Z) emits -----

Ans:
$$\frac{A-Z-4}{Z-8}$$

Sol:
$$_{Z}X^{A} \rightarrow_{Z-8} Y^{A-12} + 3\alpha + 2\beta^{+}$$

No. of neutrons = A - 12 - (Z - 8)
 \therefore Ratio = $\frac{A-Z-4}{Z-8}$

17. Let there be a spherically symmetric charge distribution with charge -----

Ans:
$$\frac{\rho_0 r}{4\epsilon_0} \left[\frac{5}{3} - \frac{r}{R} \right]$$

$$\rho_{r} = \int_{0}^{r} \rho_{0} \left(\frac{5}{4} - \frac{x}{R}\right) 4\pi x^{2} dx$$

$$= 4\pi \rho_{0} \int_{0}^{r} \left(\frac{5}{4} - \frac{x}{R}\right) x^{2} dx$$

$$= 4\pi \rho_{0} \left[\frac{5}{4} \left[\frac{x^{3}}{3}\right]_{0}^{r} - \left[\frac{x^{4}}{4R}\right]_{0}^{r}\right]$$

$$= 4\pi \rho_{0} \left[\frac{5}{4} \frac{r^{3}}{3} - \frac{r^{4}}{4R}\right]$$
Gauss's law is
$$E.4\pi r^{2} = \frac{4\pi \rho_{0}}{\epsilon_{0}} \left[\frac{5}{4} \frac{r^{3}}{3} - \frac{r^{4}}{4R}\right]$$

$$\Rightarrow E = \frac{\rho_{0}r}{4\epsilon_{0}} \left[\frac{5}{3} - \frac{r}{R}\right]$$

- 18. In a series LCR circuit R = 200 Ω and the voltage and the frequency of the main supply ------
 - Ans: 242 W
 - Since the lag by removing the capacitance Sol: is equal to the lead by removing the inductor $X_C = X_L$. The circuit is in resonance condition. Power dissipated is $\frac{V^2}{R}$ $(220)^2$ 200 = 242 W
- 19. In the circuit shown below, the key K is closed at t = 0. ----nphant

Ans:
$$\frac{V}{R_2}$$
 at t = 0 and $\frac{V(R_1 + R_2)}{R_1 R_2}$ at t = \circ

current through L. Therefore current at t = 0 is $\frac{V}{R_2}$ At $t = \infty$, $V_{\perp} = 0$

$$R_{\text{eff}} = \frac{R_1 R_2}{R_1 + R_2} \Rightarrow I = \frac{V(R_1 + R_2)}{R_1 R_2}$$

20. A particle is moving with velocity ------

Ans:
$$y^2 = x^2 + \text{constant}$$

Sol: $\overline{v} = K(y\hat{i} + x\hat{j})$
 $\frac{d\overline{r}}{dt} = Ky\hat{i} + Kx\hat{j}$
 $\Rightarrow \overline{r} = Kyt\hat{i} + Kxt\hat{j} + C$
 $\Rightarrow r^2 = K^2y^2t^2 + K^2x^2t^2 + \text{constant}$
 $(x^2 + y^2) = K^2y^2t^2 + K^2x^2t^2 + \text{constant}$

- $y^{2} [1 K^{2}t^{2}] = x^{2}[K^{2}t^{2} 1] + constant$ $y^{2} = \frac{x^{2}[K^{2}t^{2} - 1]}{[1 - K^{2}t^{2}]} + \text{constant}$ $= -x^{2}$ + current = x^{2} + constant \therefore y² = x² + constant
- 21. Let C be the capacitance of a capacitor discharging through ------

1

Ans:
$$\frac{1}{2}$$

Sol: $Q = R_0 e^{-t/RC}$
 $\frac{Q_1^2}{2C} = \frac{Q_0^2}{2C} \cdot \frac{1}{2}$
 $\Rightarrow Q_1 = \frac{Q_0}{\sqrt{2}}$
 $\therefore \frac{Q_0}{\sqrt{2}} = Q_0 e^{-t_1/\tau}$
 $\frac{1}{\sqrt{2}} = e^{-t_1/\tau}$
 $\sqrt{2} = e^{t_1/\tau} \ln\sqrt{2} = \frac{t_1}{\tau} \quad \dots (1)$
 $\frac{Q_2^2}{2C} = \frac{Q_0^2}{2C} \cdot \frac{1}{4}$
 $Q_2 = \frac{Q_0}{2}$
 $\therefore \frac{Q_0}{2} = Q_0 e^{-t_2/\tau}$
 $\therefore 2 = e^{t_2/\tau}$
 $\therefore \ln 2 = \frac{t_2}{\tau}$
 $\therefore \frac{t_1}{t_2} = \frac{\ln\sqrt{2}}{\ln 2} = \frac{1}{2}$

Sol: At the instant of switching on there is no 22. A rectangular loop has a sliding connector PQ of length & and -----

Ans:
$$I_1 = I_2 = \frac{B\lambda v}{3 R}, I = \frac{2B\lambda v}{3 R}$$

Sol: Motional emf, & = Blv

$$R_{\text{effective}} \text{ (external)} = R \parallel R = \frac{R}{2}$$
Internal resistance = R
Total resistance = R + $\frac{R}{2} = \frac{3R}{2}$

$$\therefore I = \frac{\&}{\left(\frac{3R}{2}\right)} = \frac{2\&}{3R} = \frac{2B\lambda v}{3R}$$

$$I_{1} = I_{2} = \frac{I}{2} = \frac{B\lambda v}{3R}$$

Aliter

$$\begin{split} & IR + I_1R = B \& v \; ---- \; (i) \\ & IR + I_2R = B \& v \; ---- \; (ii) \\ & (i) - (ii) \Rightarrow I_1R - I_2R = 0 \Rightarrow I_1 = I_2 \\ & I = I_1 + I_2 = 2I_2 \\ & \therefore \; (ii) \Rightarrow 3 \; I_2R = B \& v \\ & \Rightarrow I_2 = \frac{B \lambda v}{3 \; R} \\ & I_1 = I_2 = \frac{B \lambda v}{3 \; R} \; ; \; I = \frac{2 \; B \lambda v}{3 \; R} \end{split}$$

23. The equation of a wave on a string of linear mass density 0.04

Sol:
$$y = 0.02 \sin \left[\frac{2\pi t}{0.04} - \frac{2\pi x}{0.50} \right]$$

Compare with $y = A \sin (\omega t - kx)$
 $\Rightarrow \omega = \frac{2\pi}{0.04}$ and $k = \frac{2\pi}{0.50}$
 $\therefore v = \frac{\omega}{k} = \frac{0.5}{0.04} = 12.5 \text{ m s}^{-1}$
But $v = \sqrt{\frac{T}{\mu}} \Rightarrow T = v^2 \mu$
 $\therefore T = (12.5)^2 \times 0.04$
 $= 6.25 \text{ N}$

24. Two fixed frictionless inclined planes making an angle ------

Ans: Zero

Ans: 6.25 N

- Sol: Vertical acceleration of A and B are g. Hence relative vertical acceleration of A w.r.t B is zero.
- 25. For a particle in uniform circular motion, the acceleration -----

Ans:
$$-\frac{V^2}{R}\cos\theta \hat{i} - \frac{V^2}{R}\sin\theta \hat{j}$$

Sol:

$$a_{c} = \frac{V^{2}}{R}$$

$$(a_{c})_{X} = -\frac{V^{2}}{R}\cos\theta \hat{i}$$

$$(a_{c})_{Y} = -\frac{V^{2}}{R}\sin\theta \hat{j}$$

$$\therefore \ \overline{a}_{c} = -\frac{V^{2}}{R}\cos\theta \hat{i} - \frac{V^{2}}{R}\sin\theta \hat{j}$$

26. A small particle of mass m is projected at an angle θ -----

Ans:
$$-\frac{mv_0gt^2}{2}\cos\theta\hat{k}$$
Sol:
$$\vec{L} = \vec{r} \times \vec{p} \Rightarrow \vec{L} \text{ is in the } -\hat{k} \text{ direction}$$

$$\vec{x} = tv_0\cos\theta\hat{i}$$

$$\vec{y} = \left[tv_0\sin\theta - \frac{1}{2}gt^2\right]\hat{j}$$

$$\vec{r} = v_0t\cos\theta\hat{i} + t\left(v_0\sin\theta - \frac{gt}{2}\right)\hat{j}$$

$$\vec{v} = v_x\hat{i} + v_y\hat{j}$$

$$= v_0\cos\theta\hat{i} + (v_0\sin\theta - gt)\hat{j}$$

$$\vec{p} = mv = mv_0\cos\theta\hat{i} + m(v_0\sin\theta - gt)\hat{j}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$= \left[v_0t\cos\theta\hat{i} + t\left(v_0\sin\theta - \frac{gt}{2}\right)\hat{j}\right] \times \left[mv_0\cos\theta\hat{i} + m(v_0\sin\theta - gt)\hat{j}\right]$$

 $mv_{0}t\cos\theta(v_{0}\sin\theta - gt)\hat{k} - tmv_{0}\cos\theta\left[v_{0}\sin\theta - \frac{gt}{2}\right]\hat{k}$ $= \left[mv_{0}^{2}t\sin\theta\cos\theta - mv_{0}gt^{2}\cos\theta\hat{k}\right]$ $- \left[mv_{0}^{2}t\sin\theta\cos\theta - \frac{mv_{0}gt^{2}}{2}\right]\hat{k}$ $= -\frac{mv_{0}gt^{2}}{2}\cos\theta\hat{k}$

27. Two identical charged spheres are suspended by strings of

Ans: 2

$$\begin{split} & \ell \sin 15^\circ = \frac{q^2}{4\pi\epsilon_0 d^2} \\ & \ell \cos 15^\circ = mg \\ & \tan 15^\circ = \frac{q^2}{mg d^2 4\pi\epsilon_0} \quad ---- (i) \\ & \ln \text{ liquid } g' = g \bigg[1 - \frac{\sigma}{\rho} \bigg] = g \bigg[1 - \frac{0.8}{1.6} \bigg] = \frac{g}{2} \\ & \epsilon = \epsilon_0 \text{ K} \\ & \text{ Again } \tan 15^\circ \\ & = \frac{q^2}{mg' d^2 4\pi\epsilon} = \frac{2q^2}{mg d^2 4\pi\epsilon_0 \text{K}} \quad ----- (ii) \\ & \text{ From (i) } \text{ and (ii) } \frac{2q^2}{4\pi\epsilon_0 \text{ Kmg} d^2} = \frac{q^2}{mg d^2 4\pi\epsilon_0} \\ & \Rightarrow \frac{2}{\text{ K}} = 1 \Rightarrow \text{ K} = 2 \end{split}$$

28. A point P moves in counter-clockwise direction on a circular path as shown ----

Ans:

Sol:
$$S = t^3 + s$$

Speed $v = \frac{ds}{dt} = 3t^2$
At $t = 2 s$, $v = 12 m s^{-1}$
 $a_c = \frac{v^2}{r} = \frac{(12)^2}{20} = 7.2 m s^{-2}$
Tangential acceleration,
 $a_t = \frac{dv}{dt} = 6t$
At $t = 2 s$, $a_t = 6 \times 2 = 12 m s^{-2}$
 $\therefore a = \sqrt{a_c^2 + a_t^2} = \sqrt{(7.2)^2 + (12)^2}$
 $= \sqrt{51.84 + 144}$
 $= \sqrt{195.84}$
 $\cong 14 m s^{-2}$
The potential energy function for the force

29. The potential energy function for the force between two atoms -----

Ans:
$$0 - \left(-\frac{b^2}{4a}\right) = \frac{b^2}{4a}$$

Sol: $U_{(x)} = \frac{a}{x^{12}} - \frac{b}{x^6}$
 $F = -\frac{dU_{(x)}}{dx} = -[-12 \text{ ax}^{-13} + 6bx^{-7}]$
 $= 12ax^{-13} - 6 bx^{-7}$
At equilibrium, $F = 0 \Rightarrow 0$
 $= 12ax^{-13} - 6bx^{-7}$
 $\therefore 12ax^{-13} = 6bx^{-7}$

$$1 = \frac{6}{12} \frac{b}{a} \cdot \frac{x^{-7}}{x^{-13}}$$

= $\frac{b}{2a} \cdot x^{6}$
 $\therefore x = \left(\frac{2a}{b}\right)^{1/6}$ at equilibrium
 $U_{(x)} = \infty = 0$
 $U_{at equilibrium} = \frac{a}{\left(\frac{2a}{b}\right)^{12/6}} - \frac{b}{\left(\frac{2a}{b}\right)^{6/6}}$
= $\frac{ab^2}{4a^2} - \frac{b^2}{2a} = -\frac{b^2}{4a}$
 $\therefore D = 0 - \left(-\frac{b^2}{4a}\right) = \frac{b^2}{4a}$

30. Two conductors have the same resistance at 0 °C but their temperature

Ans:

$$\begin{array}{ll} \text{Sol:} & \text{In series} \\ & R_0 = R_1 + R_2 \\ & R_t = R_1' + R_2' \\ & = R_1 + R_1 \alpha_1 t + R_2 + R_2 \alpha_2 t \\ & = (R_1 + R_2) + t[R_1 \, \alpha_1 + R_2 \, \alpha_2] - \cdots & (i) \\ & \text{But } R_t = R_0 + R_0 \, \alpha t \\ & = (R_1 + R_2) + (R_1 + R_2) \alpha t - \cdots & (ii) \\ & \text{From (i) & (ii)} \\ & \alpha = \frac{(R_1 \alpha_1 + R_2 \alpha_2)}{(R_1 + R_2)} \\ & = \frac{\alpha_1 + \alpha_2}{2} \, \left(\Theta \, R_1 = R_2 \right) \\ & \text{In parallel} \\ & R_0 = \frac{R}{2} \\ & R_t = \frac{R[1 + \alpha_1 t] R[1 + \alpha_2 t]}{R[1 + \alpha_1 t] + [1 + \alpha_2 t]]} \\ & = \frac{R(1 + \alpha_1 t)(1 + \alpha_2 t)}{R(1 + \alpha_1 t) + (1 + \alpha_2 t)} - \cdots & (ii) \\ \end{array}$$

$$[2 + \alpha_1 t + \alpha_2 t]$$

But R_t = $\frac{R}{2}[1 + \alpha t]$ --- (ii)

From (i) & (ii) (1 + \alpha t)

$$= \frac{2[1 + \alpha_1 t](1 + \alpha_2 t)}{[2 + \alpha_1 t + \alpha_2 t]}$$

$$\alpha t = \frac{2[1 + \alpha_1 t + \alpha_2 t + \alpha_1 \alpha_2 t^2]}{[2 + \alpha_1 t + \alpha_2 t]} - 1$$

$$= \frac{\alpha_1 t + \alpha_2 t + \alpha_1 \alpha_2 t^2}{[2 + \alpha_1 t + \alpha_2 t]}$$

$$= \frac{1}{(2 + \alpha_1 t + \alpha_2 t)}$$
$$= \frac{t(\alpha_1 + \alpha_2 + \alpha_1 \alpha_2 t)}{2 + (\alpha_1 + \alpha_2)t}$$

$$\Rightarrow \alpha = \frac{\alpha_1 + \alpha_2 + \alpha_1 \alpha_2 t}{2 + (\alpha_1 + \alpha_2)t}; \text{ At } t = 0,$$
$$\alpha = \frac{\alpha_1 + \alpha_2}{2}$$

- **31.** In aqueous solution the ionization constants
 - Ans : The concentration of H⁺ and HCO₃⁻ are approximately equal.
 - Sol : $H_2CO_3 \longrightarrow H^+ + HCO_3^ HCO_3^- \longrightarrow H^+ + CO_3^{2-}$ Since the k₂ value is very low compared to that of k₁, the H⁺ obtainable from HCO_3^- is
- **32.** Solubility product of silver bromide is 5.0×10^{-13}
 - Ans : 1.2×10^{-9} g

negligibly small.

- Sol : $k_{sp}(AgBr) = [Ag^{+}] [Br^{-}]$ $[Br^{-}] = \frac{5 \times 10^{-13}}{0.05} = 1 \times 10^{-11} \text{ moles/L}$ ∴ No. of moles of KBr = 10^{-11} Wt of KBr = $120 \times 10^{-11} = 1.2 \times 10^{-9} \text{ g}$
- **33.** The correct sequence which shows decreasing order of

Ans :
$$O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$$

- Sol: For isoelectronic species the radii decreases with increase in atomic number.
- 34. In the chemical reactions,
 - Ans : benzene diazonium chloride and fluorobenzene

35. If 10^{-4} dm³ of water is introduced into a 1.0 dm³ flask at 300 K,

Ans :
$$1.27 \times 10^{-3}$$
 mol

- Sol: PV = nRT $n = \frac{3170 (Pa) \times 1 \times 10^{-3} (m^3)}{8.314 (JK^{-1} mol^{-1}) \times 300(K)}$ = 1.27 × 10⁻³ mol
- **36.** From amongst the following alcohols the one that would react fastest with.....

Sol :
$$\begin{array}{c} CH_3\\ CH_3\\ CH_3\\ CH_3\\ Order of reactivity of alcohols with \end{array}$$

- con.HCl/ZnCl₂ (Lucas reagent) is $3^{\circ} > 2^{\circ} > 1^{\circ}$
- **37.** If sodium sulphate is considered to be completely dissociated into cations and anions in aqueous solution, the change

Sol:
$$\Delta T_f = i \times k_f \times m$$

= 3 × 1.86 × 0.01
= 0.0558 K

- **38.** Three reactions involving $H_2PO_4^-$ are given below:....
 - Ans: (ii) only
 - Sol : $H_2PO_4^-$ act as H^+ donor in reaction (ii).
- 39. The main product of the following reaction is

 C_6H_5 CH_2 CH_2 CH_2 CH_3 H^+ H_2O OH CH₃ | Ð -CH-CH3 -CH2-CH C_6H_5 (2° carbocation) 1,2-migration of hydride ion $\begin{array}{c} \mathsf{C}_{6}\mathsf{H}_{3} \\ \mathsf{C}_{6}\mathsf{H}_{5} \overset{\textcircled{\mbox{\boldmath Θ}}}{-} \mathsf{C}\mathsf{H} \overset{-}{-} \mathsf{C}\mathsf{H}_{2} \overset{-}{-} \mathsf{C}\mathsf{H}_{3} \overset{-}{-} \mathsf{H}^{+} \end{array} \rightarrow$ (more stable 2°benzylic carbocation) H_5C_6 _____C=с<____ Н_____СH(СН₃)₂

40. The energy required to break one mole of CI - CI bonds in Cl₂ is 242 kJ mol⁻¹.....

Ans: 494 nm

Sol:
$$E = \frac{242 \times 10^3}{6.02 \times 10^{23}} \text{ J molecule}^{-1}$$

 $E = \frac{h \times c}{\lambda}$
 $\therefore \lambda$
 $= \frac{6.626 \times 10^{-34} \text{ (Js)} \times 3 \times 10^8 \text{ (ms}^{-1)}}{\left(\frac{242 \times 10^3}{6.02 \times 10^{23}}\right) \text{ (J molecule}^{-1)}}$
 $= 0.494 \times 10^{-6} \text{ m}$
 $= 494 \text{ nm}$

41. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method

Ans: 23.7

Sol: % of N =
$$\frac{14 \times (V_1 - V_2)N_1 \times 100}{w \times 1000}$$

= $\frac{14 \times (20 - 15) \times 0.1 \times 100}{0.0295 \times 1000}$ = 23.7

42. Ionisation energy of He+ is 19.6×10^{-18} J atom⁻¹. The energy

Sol:
$$E \propto \frac{z^2}{n^2}$$

 $E_{Li^{2+}} = \frac{9}{4} \times E_{He^+}$
 $= \frac{9}{4} \times -19.6 \times 10^{-18} \text{ J atom}^{-1}$
 $= -4.41 \times 10^{-17} \text{ J atom}^{-1}$

43. On mixing, heptane and octane form an ideal solution. At 373 K, the vapour pressures

Ans: 72.0 kPa

Sol:
$$n_A = \frac{25}{100} = 0.25$$

 $n_B = \frac{35}{114} = 0.31$
 $x_A = \frac{0.25}{0.56} = 0.45$
 $p = p_A^0 \cdot x_A + p_B^0 \cdot x_B$
 $= 105 \times 0.45 + 45 \times 0.55$
 $= 72 \text{ kPa}$

44. Which one of the following has an optical isomer?

45. Consider the following bromides:.....

Ans: B > C > A

- Order of S_N1 reactivity is related to the Sol : relative stability of carbocation formed by ionisation (B) gives allylic secondary carbocation, (C) gives secondary carbocation and (A) gives primary carbocation on ionisation.
- 46. One mole of a symmetrical alkene on ozonolysis gives two moles of an aldehyde

Ans: 2-butene

Sol : $CH_3 - CH = CH - CH_3 \xrightarrow{ozonolysis}$ 2-butene $2CH_3 - CHO$

Ethanal Molecular mass : 44 u

47. Consider the reaction: $Cl_2(aq) + H_2S(aq) \rightarrow S(s) + 2H^+(aq) + 2Cl^-(aq)$

Ans: A only

- Sol: Slow step is the rate determining step. According to A; rate = K[Cl₂][H₂S] According to B; rate = $\frac{K[CI_2][H_2S]}{[H^+]}$
- **48.** The Gibbs energy for the decomposition of Al_2O_3 at 500°C is as follows:.....

Ans: 2.5 V

- Sol: $\Delta G = -nFE$ $\frac{3}{2} \times 966 \times 10^3 \, \text{(J)} = 6 \times 96500 \times \text{E}$ E = 2.5 V
- 49. The correct order of increasing basicity of the given conjugate bases

Ans:
$$RCOO < HC = \overline{C} < \overline{NH}_2 < \overline{R}$$

- Sol: Acidic strength of the corresponding conjugate acid is $CH_3 - COOH > CH \equiv CH > NH_3 > CH_4$ Hence the basicity of the conjugate base must be the reverse.
- Triumphant Eds 50. The edge length of a face centered cubic cell of an anionic substance is 508 pm.....
 - Ans: 144 pm
 - Sol: $2(r_{(+)} + r_{(-)}) = a$ $r_{(+)} + r_{(-)} = \frac{508}{2} = 254$ $r_{(-)} = 254 - 110 = 144 \text{ pm}$
- 51. Out of the following, the alkene that exhibits optical isomerism is
 - Ans: 3-methyl-1-pentene

52. For a particular reversible reaction at temperature T, ΔH and ΔS were found to be

Ans : $T > T_{e}$

Sol : At equilibrium, $\Delta H = T_e \Delta S$ $\therefore \Delta G = \Delta H - T\Delta S$ $= \Delta S (T_e - T)$ ΔG will be negative when T > T_e.

- 53. Percentages of free space in cubic close packed structure and in body centered
 - Ans: 26% and 32%
 - Sol: For ccp and bcc percentages of free space are 26% and 32% respectively.
- 54. The polymer containing strong intermolecular forces e.g. hydrogen bonding

Ans: nylon-6, 6

- Sol: Nylon-6,6 is a fibre having strong intermolecular forces due to hydrogen bonding.
- 55. At 25° C, the solubility product of Mg(OH)₂ is 1.0 \times 10⁻¹¹. At which pH, will Mg²⁺ ions start precipitating

Sol:
$$k_{sp[Mg(OH)_2]} = [Mg^{2+}] [OH^{-}]^2$$

$$\therefore [OH^{-1}]^{2} = \frac{10^{-11}}{10^{-3}} = 10^{-8}$$

[OH^{-1}] = 10^{-4}
pOH = 4
pH = 10

56. The correct order of $E_{M^{2+}/M}^{0}$ values with negative sign for the four successive elements

Ans : Mn > Cr > Fe > Co

Sol: Mn > Cr > Fe > Co Standard reduction potential values of $Mn^{2+}/Mn = -1.18 V$ $Cr^{2+}/Cr = -0.91 V$ $Fe^{2+}/Fe = -0.44 V$ $Co^{2+}/Co = -0.28 V$

- 57. Biuret test is not given by
 - Ans : carbohydrates
 - Sol: Biuret test is not answered by carbohydrates.
- **58.** The time for half life period of a certain reaction $A \rightarrow$ Products is 1 hour. When the initial concentration of the reactant 'A',.....

Ans: 0.25 h

- $\begin{array}{ll} \text{Sol}: & \text{For a zero order reaction, } t \underset{2}{1/2} \alpha \text{ a} \\ & 2.0 \text{ mol } L^{-1} \rightarrow 1.0 \text{ mol } L^{-1}; \ t \underset{2}{1/2} = 1 \text{ hour} \\ & 0.5 \text{ mol } L^{-1} \rightarrow 0.25 \text{ mol } L^{-1}; \\ & t \underset{2}{1/2} = 0.25 \text{ hour} \end{array}$
- **59.** A solution containing 2.675 g of $CoCl_3.6NH_3$ (molar mass = 267.5 g mol⁻¹) is passed through a cation exchanger.
 - Ans : [Co(NH₃)₆]Cl₃
 - Sol : No. of moles of AgCl = $\frac{4.78}{143.5} \approx 0.03$

i.e., 0.01 moles of the compound gives
0.03 moles of AgCl
∴ No. of moles of Cl⁻ per unit = 3
∴ Formula of the complex is [Co(NH₃)₆]Cl₃

60. The standard enthalpy of formation of NH_3 is $-46.0 \text{ kJ mol}^{-1}$. If the enthalpy of formation of H_2 from its atoms is -436 kJ mol^{-1} and that of N_2 is -712 kJ mol^{-1}

Ans : +352 kJ mol⁻¹

Sol : $N_2 + 3H_2 \rightarrow 2NH_3$ 2 x -46 = +712 + 3 x +436 - (6 x N - H) N - H = +352 kJ mol⁻¹

PART – C -MATHEMATICS

- **61.** Consider the following relations : $R = \{(x, y)|x, y \text{ are real numbers and } \dots$
 - Ans: S is an equivalence relation but R is not an equivalence relation.
 - $\begin{array}{ll} \text{Sol:} & x \; R_y = x = wy \Rightarrow x \; R_x \\ & \therefore \; \text{R is reflexive} \\ & x R_y \Rightarrow x = wy \; \text{and} \; y \; R_x \Rightarrow y = w'x \\ & \text{where } w \; ' = \; \displaystyle \frac{1}{w} \; , \; \text{this is possible only} \end{array}$

if w ≠ 0 ie x $R_0 \gg 0 R_x$ ie; R is not symmetric ... R is not an equivalence relation. $_{m}S_{p} \Rightarrow mq = pn$ n q $\therefore \ _m S_m$ exists by the definition so S is n n reflexive. $\underbrace{{}_{\frac{m}{n}}S_{\underline{p}}}_{n} \Rightarrow mq = pn \Rightarrow pn = mq \Rightarrow \underbrace{{}_{\underline{p}}S_{\underline{m}}}_{q}$:. S is symmetric. Again, $\frac{m}{n} \frac{S_{p}}{a}, \frac{p}{a} \frac{S_{r}}{s} \Rightarrow mq = pn and ps = qr$ n q q s ie; mq.ps = pn.qr \Rightarrow ms = nr \Rightarrow <u>m</u> S_r : S is transitive : S is an equivalence relation but is not an equivalence relation.

62. The number of complex numbers z such that $|z - 1| = |z + 1| = \dots$

Ans: 1

Ans: 1

- Sol: z is a point equidistant from 3 given points.
 ∴ z is the centre of the circle passing through 1, -1, i.
- **63.** If α and B are the roots of the equation $x^2 x + 1 = 0, \dots$

Sol:
$$-\omega - \omega^{2}$$

 $\alpha^{2009} = (-\omega)^{2009}$
 $= -\omega^{2007} \cdot \omega^{2}$
 $= -\omega^{2}$
 $\beta^{2009} = (-\omega^{2})^{2009}$
 $= -\omega^{4018}$
 $= -\omega^{4017} \times \omega$
 $= -\omega$
 $-\omega^{2} - \omega = -(\omega^{2} + \omega) = 1.$
64. Consider the system of linear equations :
 $x_{1} + 2x_{2} + x_{3} = 3$
 $2x_{1} + 3x_{2} + x_{3} = 3$

Ans: No solution.

Sol:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 5 & 2 \end{bmatrix} \Rightarrow |A| = 0$$

 $Ax_1 = \begin{bmatrix} 3 & 2 & 1 \\ 3 & 3 & 1 \\ 1 & 5 & 2 \end{bmatrix} \Rightarrow |Ax_1| \neq 0.$

:. The given system has no solutions.

- **65.** There are two urns. Urn A has 3 distinct red balls
- **66.** Let $f : (-1, 1) \rightarrow R$ be a differentiable function with
 - Ans: -4
 - Sol: $g(x) = [f(2f(x) + 2)]^2$ $g'(x) = 2f(2f(x) + 2) \times 2f'(x)$ $g'(0) = 2f(2f(0) + 2) \times 2f'(0)$ $= 4 \times 1 \times f(2 - 2)$ = 4 f(0)= -4.
- 67. Let $f : \mathbf{R} \to \mathbf{R}$ be a positive increasing function with $\lim \frac{f(3x)}{f(x)} = 1$
 - Ans: 1
 - Sol: Given $\lim_{x\to\infty} \frac{f(3x)}{f(x)} = 1$ since f(x) is an increasing function, $\lim_{x\to\infty} \frac{f(2x)}{f(x)}$ is also equal to 1.
- **68.** Let p(x) be a function defined on R such that $p'(x) = p'(1 x), \dots$
 - Ans: 21

Ans. 21
Sol:
$$f(x) = p(x) + p(1 - x)$$

 $f'(x) = p'(x) - p'(1 - x) = 0$ (given)
 $\therefore f(x) = 0$
 $\Rightarrow f(x) = k \text{ constant}$
when $x = 0$, $p(0) + p(1) \Rightarrow k = 42$
 $p(x) + p(1 - x) = 42$
 $\therefore \int_{0}^{1} p(x)dx + \int_{0}^{1} p(1 - x) = 42$
 $\therefore 2 \int_{0}^{1} p(x)dx = 42$
 $\therefore \int_{0}^{1} p(x)dx = 42$
 $\therefore \int_{0}^{1} p(x)dx = 21.$
72.

- 69. A person is to count 4500 currency notes.
 - Ans: 34 minutes
 - Sol: In the first 9 minutes the person counts $9 \times 150 = 1350$ notes Total left notes = 4500 - 1350 = 3150He counts in A.P with d = (-2) and a = 150

$$\therefore 3150 = \frac{n}{2} [300 + (n-1)(-2)]$$

= n[150 - n + 1]
3150 = 151n - n²
$$\therefore n^{2} - 151n + 3150 = 0$$

$$\Rightarrow n = \frac{252}{2} \text{ or } \frac{50}{2}$$

n = 25
$$\therefore \text{ Total time} = 25 + 9 = 34$$

= 34 mts.

70. The equation of the tangent to the curve

$$y = x + \frac{4}{x^2}, \dots$$
Ans: $y = 3$
Sol: $y = x + \frac{4}{x^2}$

$$\frac{dy}{dx} = 0 \Rightarrow 1 - \frac{8}{x^3} = 0$$

$$\Rightarrow x = 2$$

$$\therefore y = 3$$

$$\therefore \text{ Equation of tangent } y = 3.$$

71. The area bounded by the curves y = cos x and y = sin x

all.

- **72.** Solution of the differential equation $\cos x \, dy = y (\sin x y) \, dx, \dots$
 - Ans: secx = (tanx + c)y
 - Sol: Consider dy = $y(\sin x y)dx$ consider $\frac{dy}{dx} = y \sin x - y^2$ $\frac{dy}{dx} = y \tan x - y^2 \sec x$

$$\frac{dy}{dx} - y \tan x = -y^2 \sec x$$

$$\frac{-1}{y^2} \frac{dy}{dx} + \frac{1}{y} \tan x = \sec x$$

$$z = \frac{1}{y} \Rightarrow \frac{dz}{dx} = \frac{-1}{y^2} \frac{dy}{dx}$$

$$\therefore \frac{dz}{dx} + z \tan x = \sec x$$

$$\therefore I. F e^{logsecx} = \sec x$$

$$\therefore z^{secx} = \int \sec^2 x = \tan x + C$$

$$\frac{\sec x}{y} = \tan x + C$$

$$\therefore \sec x = y(\tan x + C).$$

- **73.** Let $\stackrel{\rho}{a} = \hat{j} \hat{k}$ and $\stackrel{\rho}{c} = \hat{i} \hat{j} \hat{k}$
 - Ans: -i + j 2k
 - Sol: $(a \times b) + c = 0$ $a \times (a \times b) + a \times c = 0$ $(a \cdot b)a - (a \cdot a)b + a \times c = 0$ 3j - 3k - 2b - 2i - j - k = 0 $\therefore 2b = -2i + 2j - 4k$ $\therefore \overline{b} = -i + j - 2k$
- **74.** If the vectors $\mathbf{\dot{a}} = \hat{i} \hat{j} + 2\hat{k}$,
 - Ans: (-3, 2)
 - Sol: $\overline{a}.\overline{c} = 0$ $\Rightarrow \lambda - 1 + 2\mu = 0$ $\Rightarrow \lambda + 2\mu = 1$ ------(1) $\overline{b}.\overline{c} = 0$ $\Rightarrow 2\lambda + 4 + \mu = 0$ $\therefore 2\lambda + \mu = -4$ ----(2) \therefore Solving $\lambda = -3$ and $\mu = 2$
- **75.** If two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles,
 - Ans: x = -1
 - Sol: Locus of p is directrix of $y^2 = 4x$ $\therefore x = -1$
- **76.** The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes

Ans: 1

Sol:
$$\frac{x}{5} + \frac{y}{b} = 1$$
 passes through (13, 32)
 $\Rightarrow = -20$
 \therefore Equation is $4x - y = 20$. It is parallel to
 $\frac{x}{c} + \frac{y}{3} = 1$

 $\therefore c = \frac{-3}{4} . ie; equation of line k becomes$ 4x - 3y = -3. $\therefore The distance between them<math display="block">= \left|\frac{20 - (-3)}{\sqrt{16 + 1}}\right|$ $= \frac{23}{\sqrt{17}}.$

77. A line AB in three-dimensional space makes.....

Sol:
$$\cos^2 45 + \cos^2 120 + \cos^2 \theta = 1$$

 $\frac{1}{2} + \frac{1}{4} + \cos^2 \theta = 1$
 $\cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$
 $\therefore \cos \theta = \frac{1}{2}$
 $\therefore \theta = 60^\circ.$

78. Let S be a non-empty subsets of R.

Ans: There is a rational number $x \in S$ such that $x \le 0$.

Sol: The negation of the given statement is – 'There is no rational number $x \in S$ such that x > 0.' The equivalent statement is given above.

79. Let
$$\cos(\alpha + \beta) = \frac{4}{5}$$
 and
Ans: $\frac{56}{33}$

 \mathbf{C}

- 64

$$= \frac{\tan(\alpha + \beta + \alpha - \beta)}{1 - \tan(\alpha + \beta) + \tan(\alpha - \beta)}$$
$$= \frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \times \frac{5}{12}}$$
$$= \frac{\frac{56}{33}.$$

80. The circle $x^2 + y^2 = 4x + 8y + 5$

Ans: -35 < m < 15

Sol: Perpendicular distance from
(2, 4) < Radius

$$\frac{|6-16-m|}{\sqrt{25}} < 5$$

$$= \frac{|-10-m|}{5} < 5$$

81. For two data sets, each of size 5.....

Ans: $\frac{11}{2}$

Sol:
$$\sigma^{2} = \frac{n_{1}\sigma_{1}^{2} + n_{2}\sigma_{2}^{2} + n_{1}d_{1}^{2} + n_{2}d_{2}^{2}}{n_{1} + n_{2}},$$
$$\overline{x} = \frac{n_{1}\overline{x_{1}} + n_{2}\overline{x_{2}}}{n_{1} + n_{2}},$$
since $n_{1} = n_{2}$ we get
$$\sigma^{2} = \frac{\sigma_{1}^{2} + \sigma_{2}^{2} + d_{1}^{2} + d_{2}^{2}}{2} \qquad \overline{x} = \frac{\overline{x_{1}} + \overline{x_{2}}}{2}$$
$$d_{1}^{2} = (2 - 3)^{2} = 1 \qquad \overline{x} = \frac{2 + 4}{2} = 3$$
$$d_{2}^{2} = (4 - 3)^{2} = 1$$
$$\therefore \sigma^{2} = \frac{4 + 5 + 1 + 1}{2} = \frac{11}{2}.$$

82. An urn contains nine balls of which.....

Ans: $\frac{2}{7}$

- Sol: Three balls without replacement can be done in = $\frac{3 \times 4 \times 2}{{}^9C_3}$ = $\frac{2}{7}$.
- 83. For a regular polygon, let r and R be the
 - Ans: There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$
 - Sol: Let n sided regular polygon is inscribed in a circle. From the figure it is clear that

84. The number of 3×3 non-singular matrices.....

Ans: at least 7
Sol: Consider
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. The 1 on the non
diagonal position can be shifted to 5 more
positions. Further we can consider
 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. \therefore at least 7 matrices are there.

85. Let $f : R \to R$ be defined by.....

Ans: -1

44

8

Sol: Since function has local minimum it must be continuous at x = -1 $\therefore \lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$

86. Four numbers are chosen at random.....

Ans: Statement 1 is true, Statement 2 is false.

Sol: If four chosen numbers form an AP, the common differences can be ± 1 , ± 2 , ± 3 , ± 4 , ± 5 or ± 6 . (e.g. 1, 7, 13, 19 is an AP with common difference 6)

: Statement 2 is not true.

17. Let
$$S_1 = \sum_{j=1}^{10} j (j-1)^{10} C_j$$
, $S_2 = \sum_{j=1}^{10} j^{10} C_j$

Ans: Statement 1 is true, Statement 2 is false.

Sol:
$$S_1 = \sum_{j=1}^{10} j(j-1)^{-10}C_j$$

 $S_2 = \sum_{j=1}^{10} j^{-10}C_j$
 $S_3 = \sum_{j=1}^{10} j^{2-10}C_j$
 $S_1 - S_3 = \sum_{j=1}^{10} (j^2 - j - j^2) \times^{10} C_j$
 $= -\sum_{j=1}^{10} j^{-10}C_j$
 $= -S_2$
 $S_1 + S_2 = S_3$.
 $\frac{10!}{j!(10-j)!} j(j-1)$
 $\frac{10!}{(j-2)!(10-j)!} = 9 \times 10 \times \frac{8!}{(j-2)!(10-j)!}$

$$\begin{split} \sum_{j=1}^{10} j(j-1)^{10} C_j = &90 \sum_{j=1}^{10} {}^8 C_{j-2} \\ &= 90 \times 2^8. \end{split}$$

- 88. Statement 1 : The point A (3, 1, 6) is the mirror image.....
 - Statement 1 is true, Statement 2 is true; Ans: Statement 2 is a correct explanation for statement 1
 - Sol: A (3, 1, 6) B = (1, 3, 4)Midpoint of AB is (2, 2, 5) 2 - 2 + 5 = 5Statement 2 is true D. R's of AB are [2, -2, 2] or [1, -1, 1] \Rightarrow which represent the D.R's of normal to the plane x - y + z = 5 \Rightarrow Statement 1 is true We used statement 2 to prove statement 1.
- **89.** Let $f : R \to R$ be a continuous function.....
 - Ans: Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for statement 1

Sol:
$$f(x) = \frac{1}{e^{x} + 2e^{-x}} \Rightarrow f(x) > 0$$
$$f'(x) = \frac{-1}{(e^{x} + 2e^{-x})^{2}} \left[e^{x} - 2e^{-x} + 2e^{-x} \right]^{2}$$
$$f'(x) = 0$$
$$e^{x} = \frac{2}{e^{x}}$$
$$\Rightarrow e^{2x} = 2 \Rightarrow x = \frac{1}{2} \log 2$$

Checking the sign of f'(x) as x crosses

$$\Rightarrow e^{2x} = 2 \Rightarrow x = \frac{1}{2} \log 2$$

Checking the sign of f'(x) as x crosses
 $\frac{1}{2} \log 2$, we note that f(x) is maximum at
 $x = \frac{1}{2} \log 2$.

$$x = \frac{1}{2}\log 2$$

Maximum value of f(

1 $\sqrt{2}$

 $2\sqrt{2}$

$$\frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} = \frac{1.414}{4} = 0.3535$$

Statement 2 is true

Since f(x) is continuous in R, f(x) has to assume all values between 0 and 0.3535

Since $\frac{1}{3}$ is a number lying between o and 0.3535, statement 1 is also true.

90. Let A be a 2×2 matrix with non-zero.....

Statement 1 is false, Statement 2 is true. Ans:

Sol: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Given $|A| = 1$
 $ad - bc = 1$ -----(1)
 $A^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} a^2 + bc & (a+d)b \\ (a+d)c & bc+d^2 \end{pmatrix}$
 $a^2 + bc = 1 \\ d^2 + bc = 1 \end{bmatrix}$ (1)
 $\begin{pmatrix} a+db=0 \\ (a+d)c=0 \end{bmatrix}$ (2)
Case 1
 $b = 0$ and $c = 0$
 $A = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$
Using (1)
 $A = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$

It is obvious that for a given A, Trace (a) can be different from zero. Therefore, statement 1 is not true.

OR

а.

Take the 2 × 2 unit matrix
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 as A.
A| = 1 and A² = I
However, Trace (A) $\neq 0$
Statement 1 is not true.