SOLUTION \& ANSWER FOR KCET-2009 VERSION - A1
 [PHYSICS]

1. The number of significant figures in the numbers 4.8000×10^{4}----

Ans: 5 and 7
Sol: $\quad 4.8000 \times 10^{4} \rightarrow 5$ significant digits $48000.50 \rightarrow 7$ significant digits
2. β-decay means emission of electron ---

Ans: Radioactive nucleus
3. An electric heater rated 200 V and 550 W is connected ---

Ans: 2.5 A
Sol: $\quad I=\frac{P}{V}=\frac{550}{220}=2.5 \mathrm{~A}$
4. A body of mass ` m ' moving along a straight line covers half the distance with a speed of $2 \mathrm{~ms}^{-1}-$

Ans: $\frac{8}{3} \mathrm{~ms}^{-1}$
Sol: $\quad \mathrm{V}_{1}=2 \mathrm{~ms}^{-1}$
$\mathrm{v}_{2}=3 \mathrm{~ms}^{-1}, \mathrm{v}_{3}=5 \mathrm{~ms}^{-1}$
$\mathrm{v}_{3}{ }^{\prime}=\frac{3+5}{2}=4 \mathrm{~ms}^{-1}$
$\mathrm{v}_{\mathrm{AV}}=\frac{2 \mathrm{v}_{1} \mathrm{v}_{3}{ }^{\prime}}{\left(\mathrm{v}_{1}+\mathrm{v}_{3}{ }^{\prime}\right)}=\frac{2 \times 2 \times 4}{(2+4)}$
$=\frac{8}{3} \mathrm{~ms}^{-1}$
5. The moment of inertia of a circular ring of radius

Ans: $\frac{\mathrm{Mr}^{2}}{2}$
6. A body of mass 0.05 kg is observed to fall with an acceleration of ---

Ans: 0.015 N
Sol: $\quad \mathrm{F}=\mathrm{m}(\mathrm{g}-\mathrm{a})=0.05(9.8-9.5)$
$=0.05 \times 0.3$
$=0.015 \mathrm{~N}$
7. The colloidal solution in which both the dispersed phase and -----

Ans: Emulsion
8. In fog, photographs of the objects taken with infrared radiations ---

Ans: Scattering of IR light is less than visible light.
9. Three concurrent co-planar forces $1 \mathrm{~N}, 2 \mathrm{~N}$ and 3 N ---

Ans: Cannot keep the body in equilibrium.
Sol: if 2 N and 1 N act in same direction, and 3 N acts in opposite direction, equilibrium is possible.
10. Sound waves transfer ---

Ans: Both energy and momentum.
11. Two rectangular blocks A and B of masses 2 kg and 3 kg respectively ----

Ans: 0.05 m
Sol: Initial momentum $=2 \times 0.15=0.3 \mathrm{~kg} \mathrm{~ms}^{-1}$ If ' v ' is the velocity of each block under maximum compression, then
$v=\frac{p}{\left(m_{1}+m_{2}\right)}=\frac{0.3}{2+3}=\frac{0.3}{5}=0.06 \mathrm{~m} / \mathrm{s}$
Difference in energy $=\frac{1}{2} k x^{2}$
$0.0135=\frac{1}{2} k x^{2}$
$\mathrm{x}=0.05 \mathrm{~m}$
12. G.P. Thomson experimentally confirmed the existence of matter waves ---

Ans: Diffraction.
13. The resistance of a wire at 300 K is found to be 0.3Ω-----

Ans: No correct choice.
Sol: $\quad \alpha=\frac{R_{2}-R_{1}}{R_{1} t_{2}-R_{2} t_{1}}$
$1.5 \times 1^{-3}=\frac{0.6-0.3}{0.3 \times t_{2}-0.6 \times 27}$
solving $\mathrm{t}_{2}=993 \mathrm{~K}$
14. The work done by a force acting on a body is as shown ----

Ans: 200 J

Sol: \quad Work done $=$ Area below $\mathrm{F}-\mathrm{S}$ graph

$$
=\frac{(15+10)}{2} \times 10+\left(\frac{10+20}{2}\right) \times 5
$$

$$
=200 \mathrm{~J}
$$

15. Two luminous point sources separated by a certain distance are at 10 km ----

Ans: 2.44 m
Sol: $\quad \theta=\frac{1.22 \lambda}{d}=\frac{1.22 \times 500 \times 10^{-9}}{2.5 \times 10^{-3}}$
$=2.44 \times 10^{-4}$ radian
$\mathrm{d}=\mathrm{D} \times \theta$
$=10000 \times 2.44 \times 10^{-4}$
$=2.44 \mathrm{~m}$
(Diffraction in circular aperture is not in syllabus)
16. A door of 1.6 m wide requires a force of 1 N to be applied at the free end ----

Ans: 4 N
Sol: $\quad \tau=1.6 \times 1=1.6 \mathrm{Nm}$
$F=\frac{\tau}{d}=\frac{1.6}{0.4}=4 \mathrm{~N}$
17. $0.1 \mathrm{~m}^{3}$ of water at $80^{\circ} \mathrm{C}$ is mixed with $0.3 \mathrm{~m}^{3}$ of water -----

Ans: $65^{\circ} \mathrm{C}$
Sol: $0.1(80-t)=0.3(-60)$
$80-t=3 t-180$
$4 t=260 \Rightarrow t=\frac{260}{4}=65^{\circ} \mathrm{C}$
18. The spectral series of the hydrogen atom that lies in the visible ----

Ans: Balmer series
19. A graph of pressure versus volume for an ideal gas for -----

Ans: Adiabatic process
20. Which of the following statement does not hold god for ----

Ans: The frequency changes when it travels from one medium to another.
21. A planet revolves round the Sun in an elliptical orbit ----

Ans: A
Sol: Speed is maximum, when distance from Sun is minimum
22. Horizontal tube of non-uniform cross-section has radii of 0.1 m ---

Ans: Same at M and N
Sol: $\quad Q=A_{1} v_{1}=A_{2} v_{2}$
23. A resistor and a capacitor are connected in series with an a.c. source ----

Ans: 13 V
Sol: $V=\sqrt{12^{2}+5^{2}}$

$$
=13 \mathrm{~V}
$$

24. The amount of heat energy radiated by a metal at temperature ‘ T ' ---

Ans: 81 E
Sol: $E=\sigma T^{4}$
25. The angle of minimum deviation for an incident light ray on an ---

Ans: $\sqrt{3}$
Sol: $n=\frac{\sin \frac{(A+D)}{2}}{\sin \left(\frac{A}{2}\right)}, A=D=60^{\circ}$

$$
\Rightarrow n=\sqrt{3}
$$

26. In the following combination of logic gates, the outputs of A, B and C---

Ans: 1,1,0
27. A stationary point source of sound emits sound uniformly in all directions ---

Ans: $\frac{9}{4}$

$$
\begin{aligned}
\text { Sol: } & \mathrm{I} \propto \frac{1}{\mathrm{~d}^{2}} \\
& \mathrm{I} \propto \mathrm{~A}^{2} \Rightarrow \mathrm{~A} \propto \frac{1}{\mathrm{~d}} \\
& \therefore \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}=\frac{9}{4}
\end{aligned}
$$

28. A galvanometer of resistance 240Ω allows only 4% of the main current after connecting ----

Ans: 10Ω
Sol: $\quad S=\frac{I_{g} G}{\left(I-I_{g}\right)}=\frac{\frac{4}{100} \times 240}{\frac{96}{100}}$

$$
=10 \Omega
$$

29. The phenomena in which proton flips is ---

Ans: Nuclear magnetic resonance.
30. $y=3 \sin \pi\left(\frac{t}{2}-\frac{x}{4}\right)$ represents an equation of a progressive wave, where 't' ---

Ans: 10 m
Sol: Comparing with $A \sin (\omega t-K x)$
$v=\frac{\omega}{K}=2 \mathrm{~m} / \mathrm{s}$
\therefore Distance $=2 \times 5=10 \mathrm{~m}$
31. According to the quark model, it is possible to build ----

Ans: 3 quarks and 3 anti quarks.
32. An α-particle of mass $6.4 \times 10^{-27} \mathrm{~kg}$ and charge $3.2 \times 10^{-19} \mathrm{C}$ is situated in a uniform electric field

Ans: $\quad 4 \sqrt{2} \times 10^{5} \mathrm{~ms}^{-1}$
Sol: $\quad \frac{1}{2} m v^{2}=q E \times S$

$$
\begin{aligned}
& v=\sqrt{\frac{2 q E S}{m}} \\
& =\sqrt{\frac{2 \times 3.2 \times 10^{-19} \times 1.6 \times 10^{5} \times 2 \times 10^{-2}}{6.4 \times 10^{-27}}} \\
& =4 \sqrt{2} \times 10^{5} \mathrm{~ms}^{-1}
\end{aligned}
$$

33. A cylindrical tube open at both the ends has a fundamental frequency of 390 Hz in air ----

Ans: 260 Hz
Sol: $\frac{\mathrm{v}}{2 \mathrm{~L}}=390$

$$
\begin{aligned}
& \frac{v}{4 \times \frac{3 L}{4}}=f \\
& \frac{2 \times 390}{3}=f=260 \mathrm{~Hz}
\end{aligned}
$$

34. The surface temperature of the stars is -----

Ans: Wein's displacement law
35. The charge deposited on $4 \mu \mathrm{~F}$ capacitor ----

Ans: $24 \times 10^{-6} \mathrm{C}$
Sol: $\quad 6 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are in series
\therefore Voltage across $4 \mu \mathrm{~F}=6 \mathrm{~V}$
$\therefore Q=6 \times 4 \times 10^{-6}$

$$
\begin{aligned}
& \therefore 24 \times 10^{-6} \mathrm{C} \\
& =
\end{aligned}
$$

36. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side of the ----

Ans: First increases and then decreases.
Sol: Beam first converges and then diverges.
37. Continuous emission spectrum is ---

Ans: Incandescent electric lamp.
38. A coil of ' n ' number of turns is wound tightly in the form of a spiral ----

Ans: $\frac{\mu_{0} n I}{2(b-a)} \log _{e}(b / a)$
Sol: No: of turns / unit length $=\frac{n}{(b-a)}$
\therefore at a distance r ,
$d B=\frac{\mu_{0}}{2} \frac{n}{(b-a) r} I d r$
$\therefore B=\int_{a}^{b} \frac{\mu_{0} n I}{2(b-a)} \log _{e}\left(\frac{b}{a}\right)$
39. A ray of light is incident on a plane mirror at an angle ---

Ans: 60°
Sol: Deviation $=180-2 i=180-120=60^{\circ}$
40. The electric potential at any point x, y, z in metres is ------

Ans: $-12 \mathrm{~V} / \mathrm{m}$
Sol: $E=\frac{-d V}{d x}=-6 x$
$\therefore \mathrm{E}_{(2,0,1)}=-12 \mathrm{~V} / \mathrm{m}$
41. Young's double slit experiment gives interference fringes of width 0.3 mm . A thin glass -

Ans: 0.3 mm
Sol: Fringes get shifted but width remains same.
42. Near a circular loop of conducting wire as shown in the figure an electron -----

Ans: Variable
Sol: The flux is increasing initially and then decreases. Hence induced current reverses its direction.
43. Hydrogen atom from excited state comes to the ground state by emitting -----

Ans: $\sqrt{\frac{\lambda R}{\lambda R-1}}$

$$
\begin{aligned}
\text { Sol: } & \frac{1}{\lambda}=R\left(1-\frac{1}{\mathrm{n}^{2}}\right) \\
& \therefore \mathrm{n}=\sqrt{\frac{\lambda R}{\lambda R-1}}
\end{aligned}
$$

44. The magnetic dipole moment of a current

Ans: Magnetic field in which it is lying.
Sol: $M=1 N A$
45. In ruby laser, the stimulated emission is due -----

Ans: Metastable state to ground state.
Sol: In Ruby Laser, the transition is from E_{2} state (Metastable) to E_{1} state (ground).
46. A direct current I flows along the length of an infinitely long straight thin -----

Ans: Is zero at any point inside the pipe.
Sol: Ampere's circuital law.
47. A convex lens made of glass has focal length 0.15 m -----

Ans: 0.6 m
Sol: $\quad f_{w}=4$ fair (using lens maker's formula)

$$
=4 \times 0.15
$$

$$
=0.6 \mathrm{~m}
$$

48. Two sources are said to be coherent If they ---

Ans: Having constant phase difference.
49. Three resistors $1 \Omega, 2 \Omega$ and 3Ω are connected to form a triangle

Ans: 1 A
Sol: $\quad I=\frac{V}{R}=\frac{3}{3}=1 \mathrm{~A}$
50. In a common emitter amplifier the input signal is -

Ans: Base and Emitter
51. In a radioactive disintegration, the ratio of initial number of atoms -----

Ans: e
Sol: $\quad N=N_{0} e^{-\lambda t}$

$$
\mathrm{t}=\frac{1}{\lambda}, \quad \frac{\mathrm{~N}_{0}}{\mathrm{~N}}=\mathrm{e}
$$

52. A ray of light is incident on a surface of glass slab at an angle -----

Ans: $\tan ^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$
Sol: $\quad S=t \frac{\sin (i-r)}{\cos r}$

$$
\begin{aligned}
& \frac{1}{\sqrt{3}}=\frac{\sin (i-r)}{\cos r} \\
& =\frac{\sin i \cos r-\cos i \sin r}{\cos r} \\
& \frac{1}{\sqrt{3}}=\frac{1}{\sqrt{2}}(1-\tan r) \\
& \frac{\sqrt{2}}{\sqrt{3}}=1-\tan r \\
& r=\tan ^{-1}\left(1-\sqrt{\frac{2}{3}}\right)
\end{aligned}
$$

53. Ferromagnetic materials used in a transformer ---

Ans: High permeability and low hysteresis loss.
54. According to Newton's Corpuscular Theory, -----

Ans: Lesser in a rarer medium.
55. For the constructive interference the path difference between the two ------

Ans: $n \lambda$

Sol: Note: $(2 n+1) \frac{\lambda}{2}$ is possible for constructive interference in thin films, Lloyd's single mirror etc.
56. The accurate measurement of emf can ----

Ans: Potentiometer
Sol: Potentiometer is an ideal voltmeter.
57. The kinetic energy of an electron gets tripled, then the -----

Ans: $\frac{1}{\sqrt{3}}$

Sol:

$$
\begin{aligned}
& E \propto \frac{1}{\lambda^{2}} \Rightarrow \lambda^{\prime}=\frac{\lambda}{\sqrt{3}} \\
& E^{\prime} \Rightarrow 3 E
\end{aligned}
$$

58. Which of the following is not a thermodynamic ---

Ans: Gas constant
59. Two solid pieces, one of steel and the other of aluminium when immersed -----

Ans: Aluminium piece will weight more.
Sol: Apparent weight in air
$\left(1-\frac{\text { density of liquid }}{\text { density of solid }}\right)$
$\Rightarrow \frac{\mathrm{W}_{\mathrm{S}}}{\mathrm{W}_{\mathrm{A}}}=\frac{\left(1-\frac{\sigma}{\rho_{\mathrm{A}}}\right)}{\left(1-\frac{\sigma}{\rho_{\mathrm{S}}}\right)}<1$
60. The amount of energy released when one microgram ----

Ans: 25 kWh (No correct choice)
Sol: $E=m c^{2}$
$=10^{-6} \times 10^{-3} \times\left(3 \times 10^{8}\right)^{2}$
$=9 \times 10^{7} \mathrm{~J}$
$\therefore \mathrm{E}=\frac{9 \times 10^{7}}{3.6 \times 10^{6}} \mathrm{kWh}$
$=25 \mathrm{kWh}$
(Note:- If the mass in milligram, the answer will be $0.25 \times 10^{5} \mathrm{kWh}$)

