SOLUTION & ANSWER FOR KCET-2009 VERSION – A1 [PHYSICS]

1. The number of significant figures in the numbers 4.8000×10^4 ----

Ans: 5 and 7

Sol: $4.8000 \times 10^4 \rightarrow 5$ significant digits $48000.50 \rightarrow 7$ significant digits

2. β-decay means emission of electron ---

Ans: Radioactive nucleus

An electric heater rated 200 V and 550 W is connected ---

Ans: 2.5 A

Sol: $I = \frac{P}{V} = \frac{550}{220} = 2.5 \text{ A}$

4. A body of mass `m' moving along a straight line covers half the distance with a speed of 2 ms⁻¹ --

Ans: $\frac{8}{3} \text{ms}^{-1}$

Sol: $v_1 = 2 \text{ ms}^{-1}$ $v_2 = 3 \text{ ms}^{-1}$, $v_3 = 5 \text{ ms}^{-1}$ $v_3' = \frac{3+5}{2} = 4 \text{ ms}^{-1}$ $v_{AV} = \frac{2v_1v_3'}{(v_1 + v_3')} = \frac{2\times2\times4}{(2+4)}$ $= \frac{8}{3}\text{ms}^{-1}$

5. The moment of inertia of a circular ring of radius -----

Ans: $\frac{Mr^2}{2}$

6. A body of mass 0.05 kg is observed to fall with an acceleration of ---

Ans: 0.015 N

Sol: F = m(g - a) = 0.05 (9.8 - 9.5)= 0.05×0.3 = 0.015 N

7. The colloidal solution in which both the dispersed phase and -----

Ans: Emulsion

8. In fog, photographs of the objects taken with infrared radiations ---

Ans: Scattering of IR light is less than visible

light.

Three concurrent co-planar forces 1 N, 2 N and 3 N ---

Ans: Cannot keep the body in equilibrium.

Sol: if 2 N and 1 N act in same direction, and 3 N acts in opposite direction, equilibrium is possible.

10. Sound waves transfer ---

Ans: Both energy and momentum.

11. Two rectangular blocks A and B of masses 2 kg and 3 kg respectively ----

Ans: 0.05 m

Sol: Initial momentum = $2 \times 0.15 = 0.3 \text{ kg ms}^{-1}$ If 'v' is the velocity of each block under maximum compression, then

$$v = {p \over (m_1 + m_2)} = {0.3 \over 2 + 3} = {0.3 \over 5} = 0.06 \text{ m/s}$$

Difference in energy = $\frac{1}{2}kx^2$

$$0.0135 = \frac{1}{2}kx^2$$
$$x = 0.05 \text{ m}$$

12. G.P. Thomson experimentally confirmed the existence of matter waves ---

Ans: Diffraction.

13. The resistance of a wire at 300 K is found to be $0.3~\Omega$ ----

Ans: No correct choice.

Sol:
$$\alpha = \frac{R_2 - R_1}{R_1 t_2 - R_2 t_1}$$

 $1.5 \times 1^{-3} = \frac{0.6 - 0.3}{0.3 \times t_2 - 0.6 \times 27}$
solving $t_2 = 993$ K

14. The work done by a force acting on a body is as shown ----

Ans: 200 J

Sol: Work done = Area below F - S graph
=
$$\frac{(15+10)}{2} \times 10 + \left(\frac{10+20}{2}\right) \times 5$$

= 200 J

15. Two luminous point sources separated by a certain distance are at 10 km ----

Ans: 2.44 m

Sol:
$$\theta = \frac{1.22 \,\lambda}{d} = \frac{1.22 \times 500 \times 10^{-9}}{2.5 \times 10^{-3}}$$
$$= 2.44 \times 10^{-4} \text{ radian}$$
$$d = D \times \theta$$
$$= 10000 \times 2.44 \times 10^{-4}$$
$$= 2.44 \text{ m}$$
(Diffraction in circular aperture is not in syllabus)

16. A door of 1.6 m wide requires a force of 1 N to be applied at the free end ----

Ans: 4 N

Sol:
$$\tau = 1.6 \times 1 = 1.6 \text{ Nm}$$

 $F = \frac{\tau}{d} = \frac{1.6}{0.4} = 4 \text{ N}$

17. 0.1 m³ of water at 80°C is mixed with 0.3 m³ of water ----

Ans: 65°C

Sol: 0.1
$$(80 - t) = 0.3 (-60)$$

 $80 - t = 3 t - 180$
 $4t = 260 \Rightarrow t = \frac{260}{4} = 65^{\circ}C$

18. The spectral series of the hydrogen atom that lies in the visible ----

Ans: Balmer series

19. A graph of pressure versus volume for an ideal gas for ----

Ans: Adiabatic process

20. Which of the following statement does not hold god for ----

Ans: The frequency changes when it travels from one medium to another.

21. A planet revolves round the Sun in an elliptical orbit ----

Ans: A

Sol: Speed is maximum, when distance from Sun is minimum

22. Horizontal tube of non-uniform cross-section has radii of 0.1 m ---

Ans: Same at M and N

Sol: $Q = A_1 v_1 = A_2 v_2$

23. A resistor and a capacitor are connected in series with an a.c. source ----

Ans: 13 V

Sol:
$$V = \sqrt{12^2 + 5^2}$$

= 13 V

24. The amount of heat energy radiated by a metal at temperature `T' ---

Ans: 81 E

Sol: $E = \sigma T^4$

25. The angle of minimum deviation for an incident light ray on an ---

Ans: $\sqrt{3}$

Sol:
$$n = \frac{\sin\frac{(A+D)}{2}}{\sin(\frac{A}{2})}$$
, $A = D = 60^{\circ}$
 $\Rightarrow n = \sqrt{3}$

26. In the following combination of logic gates, the outputs of A, B and C ---

Ans: 1, 1, 0

27. A stationary point source of sound emits sound uniformly in all directions ---

Ans: $\frac{g}{4}$

Sol:
$$I \propto \frac{1}{d^2}$$

 $I \propto A^2 \Rightarrow A \propto \frac{1}{d}$
 $\therefore \frac{A_1}{A_2} = \frac{9}{4}$

28. A galvanometer of resistance 240 Ω allows only 4% of the main current after connecting ----

Ans: 10 Ω

Sol:
$$S = \frac{I_g G}{(I - I_g)} = \frac{\frac{4}{100} \times 240}{\frac{96}{100}}$$

= 10 Ω

29. The phenomena in which proton flips is ---

Ans: Nuclear magnetic resonance.

30.
$$y = 3 \sin \pi \left(\frac{t}{2} - \frac{x}{4}\right)$$
 represents an equation of a progressive wave, where `t' ---

Sol: Comparing with A sin
$$(\omega t - Kx)$$

$$v = \frac{\omega}{\kappa} = 2 \text{ m/s}$$

$$\therefore$$
 Distance = 2 × 5 = 10 m

32. An
$$\alpha$$
-particle of mass 6.4×10^{-27} kg and charge 3.2×10^{-19} C is situated in a uniform electric field

Ans:
$$4\sqrt{2} \times 10^5 \text{ ms}^{-1}$$

Sol:
$$\frac{1}{2}$$
mv² = qE×S

$$v = \sqrt{\frac{2qES}{m}}$$

$$= \sqrt{\frac{2 \times 3.2 \times 10^{-19} \times 1.6 \times 10^{5} \times 2 \times 10^{-2}}{6.4 \times 10^{-27}}}$$

$$= 4\sqrt{2} \times 10^{5} \text{ ms}^{-1}$$

Sol:
$$\frac{v}{2L} = 390$$
$$\frac{v}{4 \times \frac{3L}{4}} = f$$
$$\frac{2 \times 390}{3} = f = 260 \text{ Hz}$$

Ans:
$$24 \times 10^{-6}$$
 C

Sol:
$$6 \mu F$$
 and $6 \mu F$ are in series
 \therefore Voltage across $4 \mu F = 6 \text{ V}$
 $\therefore Q = 6 \times 4 \times 10^{-6}$
 $= 24 \times 10^{-6} \text{ C}$

Ans:
$$\frac{\mu_0 nI}{2(b-a)} \log_e(b/a)$$

Sol: No: of turns / unit length =
$$\frac{n}{(b-a)}$$

$$dB = \frac{\mu_0}{2} \frac{n}{(b-a)r} I dr$$

$$\therefore B = \int_{a}^{b} \frac{\mu_0 nI}{2(b-a)} log_e \left(\frac{b}{a}\right)$$

39. A ray of light is incident on a plane mirror at an angle ---

Sol: Deviation =
$$180 - 2i = 180 - 120 = 60^{\circ}$$

Sol:
$$E = \frac{-dV}{dx} = -6x$$

∴
$$E_{(2, 0, 1)} = -12 \text{ V/m}$$

41. Young's double slit experiment gives interference fringes of width 0.3 mm. A thin glass –

42. Near a circular loop of conducting wire as shown in the figure an electron -----

43. Hydrogen atom from excited state comes to the ground state by emitting -----

Ans:
$$\sqrt{\frac{\lambda R}{\lambda R - 1}}$$

Sol:
$$\frac{1}{\lambda} = R \left(1 - \frac{1}{n^2} \right)$$
$$\therefore n = \sqrt{\frac{\lambda R}{\lambda R - 1}}$$

44. The magnetic dipole moment of a current -----

Ans: Magnetic field in which it is lying.

Sol: M = 1 NA

45. In ruby laser, the stimulated emission is due -----

Ans: Metastable state to ground state.

Sol: In Ruby Laser, the transition is from E_2 state (Metastable) to E_1 state (ground).

46. A direct current I flows along the length of an infinitely long straight thin -----

Ans: Is zero at any point inside the pipe.

Sol: Ampere's circuital law.

 A convex lens made of glass has focal length 0.15 m -----

Ans: 0.6 m

Sol: $f_w = 4$ fair (using lens maker's formula) = 4×0.15 = 0.6 m

48. Two sources are said to be coherent If they ---

Ans: Having constant phase difference.

49. Three resistors 1 Ω , 2 Ω and 3 Ω are connected to form a triangle -----

Ans: 1 A

Sol:
$$I = \frac{V}{R} = \frac{3}{3} = 1 \text{ A}$$

50. In a common emitter amplifier the input signal is -----

Ans: Base and Emitter

51. In a radioactive disintegration, the ratio of initial number of atoms -----

Ans: e

Sol:
$$N = N_0 e^{-\lambda t}$$

 $t = \frac{1}{\lambda}$, $\frac{N_0}{N} = e$

52. A ray of light is incident on a surface of glass slab at an angle ----

Ans: $\tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$

Sol: $S = t \frac{\sin(i-r)}{\cos r}$ $\frac{1}{\sqrt{3}} = \frac{\sin(i-r)}{\cos r}$ $= \frac{\sin i \cos r - \cos i \sin r}{\cos r}$ $\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{2}} (1 - \tan r)$ $\frac{\sqrt{2}}{\sqrt{3}} = 1 - \tan r$ $r = \tan^{-1} \left(1 - \sqrt{\frac{2}{3}}\right)$

53. Ferromagnetic materials used in a transformer ---

Ans: High permeability and low hysteresis loss.

54. According to Newton's Corpuscular Theory, -----

Ans: Lesser in a rarer medium.

55. For the constructive interference the path difference between the two -----

Ans: nλ

- Sol: Note: $(2n+1)\frac{\lambda}{2}$ is possible for constructive interference in thin films, Lloyd's single mirror etc.
- 56. The accurate measurement of emf can ----

Ans: Potentiometer

Sol: Potentiometer is an ideal voltmeter.

57. The kinetic energy of an electron gets tripled, then the -----

Ans: $\frac{1}{\sqrt{3}}$

Sol: $E \approx \frac{1}{\lambda^2} \Rightarrow \lambda' = \frac{\lambda}{\sqrt{3}}$ $E' \Rightarrow 3 E$

58. Which of the following is not a thermodynamic ---

Ans: Gas constant

59. Two solid pieces, one of steel and the other of aluminium when immersed -----

Ans: Aluminium piece will weight more.

Sol: Apparent weight in air $\left(1 - \frac{\text{density of liquid}}{\text{density of solid}}\right)$

$$\Rightarrow \frac{W_S}{W_A} = \frac{\left(1 - \frac{\sigma}{\rho_A}\right)}{\left(1 - \frac{\sigma}{\rho_S}\right)} < 1$$

60. The amount of energy released when one microgram ----

Ans: 25 kWh (No correct choice)

Sol:
$$E = mc^2$$

= $10^{-6} \times 10^{-3} \times (3 \times 10^8)^2$
= $9 \times 10^7 \text{ J}$

$$\therefore E = \frac{9 \times 10^7}{3.6 \times 10^6} \text{ kWh}$$

= 25 kWh

(Note:- If the mass in milligram, the answer will be 0.25×10^5 kWh)

