SOLUTION \& ANSWER FOR KCET-2009 VERSION - A-3

CHEMISTRY

1. In countries nearer to polar region, the roads are

Ans: to minimize the snow fall
Sol: $\quad \mathrm{CaCl}_{2}$ depresses the FP of ice
2. For the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 373 K

Ans: $\Delta H=T \Delta S$
Sol: At $373 \mathrm{~K}, \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ is in equilibrium with $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\therefore \Delta \mathrm{G}=0 \text {, then } \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{~S}
$$

3. A compound of ' A ' and ' B ' crystallizes in a cubic lattice in which the ' A ' atoms

Ans: AB_{3}
Sol: \quad A occupies corners $=8 \times \frac{1}{8}=1$
B occupies face centres $=6 \times \frac{1}{2}=3$
\therefore Empirical formula of the compound $=\mathrm{AB}_{3}$
4. In electrophilic aromatic substitution reaction, the nitro group

Ans: decreases electron density at ortho and para positions.

Sol: $\quad-\mathrm{NO}_{2}$ group when present in the benzene nucleus withdraws electrons from ortho and para positions. Thus the electron density at the ortho and para positions decreases. Meta positions become positions of comparatively higher electron density and hence electrophilic attack occurs at meta positions.
5.

Ans: Aldol

Sol:

$\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{2}-\mathrm{CHO}$
(Z) aldol
6. The best method for the conversion of an alcohol into an alkyl chloride

Ans: SOCl_{2} in presence of pyridine
Sol: Reaction of alcohol with SOCl_{2} (thionyl chloride) gives pure alkyl chloride. $\mathrm{ROH}+\mathrm{SOCl}_{2} \rightarrow \mathrm{RCI}+\mathrm{HCl}+\mathrm{SO}_{2}$ The other products, being gases, escape leaving behind pure alkyl chloride.
7. The electrophile involved in the sulphonation

Ans: SO_{3}
Sol: SO_{3} produced from concentrated or fuming sulphuric acid acts as the electrophile in sulphonation.
$2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{SO}_{3}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
8. The carbon-carbon bond length

Ans: In between $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$
Sol: The carbon - carbon double bond in benzene is in between that of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$; i.e, in between that of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$
9. The compound which is not formed during the dry distillation

Ans: Propanal
Sol: $\quad(\mathrm{HCOO})_{2} \mathrm{Ca} \xrightarrow[\mathrm{H}-\mathrm{CHO}+\mathrm{CaCO}_{3}]{\text { dry distillation }}$

Propanal is not formed.
10. An organic compound X is oxidised by using acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

Ans: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
Sol: Since the product of oxidation reacts with phenyl hydrazine, it is a carbonyl compound. Since it does not answer silver mirror test, it must be a ketone. Ketones are produced by the oxidation of secondary alcohols. So the compound X is isopropyl alcohol.

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+[\mathrm{O}] \xrightarrow{\text { acid } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \\
& \mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \text { propanone }
\end{aligned}
$$

11. The reaction involved in the oil of Winter Green test is Salicylic acid $\xrightarrow[\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}]{\Delta}$

Ans: Methanol
Sol: Methanol reacts with salicylic acid in presence of a few drops of con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to form methyl salicylate having the smell of oil of winter green.
12. The compound which forms acetaldehyde when

Ans: 1, 1 Dichloro ethane

Sol:

13. Arrange the following in the increasing order

Ans: $\mathrm{NH}_{3}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
Sol: Aliphatic amines are more basic than NH_{3} due to the + effect of alkyl groups. In aqueous solution, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\left(3^{\circ}\right.$ amine) is less basic than $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ because the cation formed by protonation of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ is less solvated compared to the cation formed by protonation of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$.
14. The one which has least lodine

Ans: Ghee
Sol: Ghee is the least unsaturated among the given options.
15. A diabetic person carries a pocket of Glucose

Ans: Glucose increases the blood sugar level almost instantaneously.

Sol: Sometimes the blood sugar level of diabetic patients decreases suddenly. So diabetic patients generally carry a packet of glucose which can increase the blood sugar level almost instantaneously.
16. There are 20 naturally occurring amino acids.

Ans: 8000
Sol: No of tripeptides possible $=20^{3}=8000$
17. Cooking is fast in a pressure cooker,

Ans: Water boils at higher temperature inside the pressure cooker.

Sol: Since the pressure is high in the pressure, cooker, water boils at a higher temperature and cooking becomes fast.
18. The ore that is concentrated by Froth Floatation

Ans: Cinnabar

Sol: A sulphide ore (Cinnabar-HgS) is concentrated by froth floatation.
19. The correct set of four Quantum numbers for outermost electron

Ans: $4,0,0, \frac{1}{2}$
Sol: $4 s^{1}$ is the valence electron in potassium.
20. A body of mass $x \mathrm{~kg}$ is moving with a velocity of $100 \mathrm{~ms}^{-1}$.

Ans: 0.1 kg
Sol: $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$

$$
\mathrm{m}=\frac{\mathrm{h}}{\lambda \mathrm{v}}=\frac{6.62 \times 10^{-34}}{6.62 \times 10^{-35} \times 100}=0.1 \mathrm{~kg}
$$

21. The correct order of ionisation energy

Ans: $\mathrm{C}<\mathrm{O}<\mathrm{N}<\mathrm{F}$
Sol: F is maximum. N due to stable p^{3} configuration comes next.
22. The oxide of an element whose electronic

Ans: Basic
Sol: It is an alkali metal. Alkali metal oxides are basic.
23. The characteristic not related

Ans: High ionisation energy
Sol: Alkali metals have low IE values
24. Among the following, the compound that

Ans: $\mathrm{NH}_{4} \mathrm{Cl}$

Sol: $\left[\begin{array}{c}\mathrm{H} \\ \mathrm{H}-\underset{\mathrm{N}}{\mathrm{N}} \\ \mathrm{H}\end{array}\right] \mathrm{H}^{+}$
25. A covalent molecule $A B_{3}$ has pyramidal structure.

Ans: 1 and 3

Sol:

26. Excess of carbon dioxide is passed through 50 ml of 0.5 M calcium hydroxide solution.

Ans: $500 \mathrm{~cm}^{3}$
Sol: No. of millmoles of $\mathrm{Ca}(\mathrm{OH})_{2}=50 \times 0.5$
No. of millmoles of $\mathrm{CaCO}_{3}=25$
No. of milliequivalence of $\mathrm{CaCO}_{3}=50$
\therefore Volume of $0.1 \mathrm{~N} \mathrm{HCl}=\frac{50}{0.1}=500 \mathrm{~cm}^{3}$
27. A bivalent metal has an equivalent mass of 32 .

Ans: 188
Sol: Atomic mass of the metal $=32 \times 2=64$
Formula of metal nitrate is $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$
\therefore Molecular mass $=64+28+96=188$
28. The r.m.s. velocity of molecules of a gas

Ans: $300 \mathrm{~ms}^{-1}$
Sol: $\mu_{\text {rms }}=\sqrt{\frac{3 P}{d}}=\sqrt{\frac{3 \times 1.2 \times 10^{5}}{4}}$

$$
=300 \mathrm{~ms}^{-1}
$$

29. 0.5 mole of each of $\mathrm{H}_{2}, \mathrm{SO}_{2}$ and CH_{4} are kept in a container.

Ans: $\mathrm{PSO}_{2}>\mathrm{P}_{\mathrm{CH}_{4}}>\mathrm{P}_{\mathrm{H}_{2}}$
Sol: Rate of diffusion $\alpha \frac{1}{\sqrt{\text { Molecular mass }}}$
Order of diffusion: $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{SO}_{2}$
Amount left is in the order $\mathrm{SO}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
\therefore Order of partial pressure is

$$
\mathrm{SO}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}
$$

30. The enthalpy of formation of NH_{3} is $-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Ans: 92 kJ
Sol: For the reaction, $2 \mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$ $\Delta \mathrm{H}=-\left(2 \times\right.$ Enthalpy of formation of $\left.\mathrm{NH}_{3}\right)$ $=-2 \times-46=92 \mathrm{~kJ}$
31. 5 moles of SO_{2} and 5 moles of O_{2} are allowed to react.

Ans: 0.41 atm
Sol:

\[

\]

32. $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

The equilibrium constant of the above reaction is 6.4 at 300 K .

Ans: 6.4
Sol: Equilibrium constant remains as a constant for a given reaction at constant temperature.
33. Rate of physical adsorption

Ans: Decrease in temperature
Sol: With the increase of temperature physical adsorption decreases.

34. IUPAC name of

Ans: 2-Chloro-2-methyl propane
Sol:

35. Lucas test is associated

Ans: Alcohols
Sol: Lucas test is used to distinguish $1^{\circ}, 2^{\circ}$ and 3° alcohols.
36. An organic compound on heating with CuO produces CO_{2} but no water.

Ans: Carbon tetrachloride

Sol: Since the compound on heating with CuO produced CO_{2}, it contains carbon. Since it does not produce water, it does not contain hydrogen. So the compound is CCl_{4} (carbon tetrachloride)
37. The condensation polymer

Ans: Protein
Sol: Proteins are the condensation polymers of α-amino acids.
38. The order of stability of metal

Ans: $\mathrm{Fe}_{2} \mathrm{O}_{3}<\mathrm{Cr}_{2} \mathrm{O}_{3}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}$
Sol:
39. The temperature of the slag zone in the metallurgy

Ans: $800-1000^{\circ} \mathrm{C}$
Sol: $800-1000^{\circ} \mathrm{C}$ is slag zone
40. The function of $\mathrm{Fe}(\mathrm{OH})_{3}$ in the

Ans: to remove arsenic impurity
Sol: $\mathrm{Fe}(\mathrm{OH})_{3}$ a positive sol removes Arsenic impurity which is a negative sol.
41. In which of the following, NH_{3}

Ans: Nessler's reagent
Sol: Nessler's reagent is used for detecting ammonia.
42. Argon is

Ans: In high temperature welding
Sol: For creating an inert atmosphere.
43. The incorrect statement in respect of

Ans: Liberation of Chlorine
Sol: $\quad \mathrm{No} \mathrm{Cl}_{2}$ is liberated, it is a test for Cl^{-}ions.
44. The magnetic moment of a transition metal ion is $\sqrt{15}$ B.M.

Ans: 3
Sol: $\quad n=3 \quad \therefore \mu=\sqrt{3(3+2)}=\sqrt{15}$
45. The IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{ONO}\right]^{2+}$

Ans: Pentaamine nitrito cobalt (III) ion
Sol: ONO^{-}is called nitrito.
46. The oxidation state of Fe in the brown ring

Ans: +2
Sol: NO is neutral ligand
47. The correct statement with regard to

Ans: H_{2}^{+}is more stable than H_{2}^{-}
 molecular orbital in H_{2}^{-}
48. Arrange the following in the increasing order

Ans: $\mathrm{O}_{2}^{--}, \quad \mathrm{O}_{2}^{-}, \quad \mathrm{O}_{2}, \quad \mathrm{O}_{2}^{+}$

Sol: $\quad \mathrm{O}_{2}^{--}, \quad \mathrm{O}_{2}^{-}, \quad \mathrm{O}_{2}, \quad \mathrm{O}_{2}^{+}$

$$
\begin{array}{lllll}
\mathrm{BO} & 1 & 1.5 & 2 & 2.5
\end{array}
$$

49. 2 gm of a radioactive sample having half life of 15 days

Ans: 0.125 gm
Sol: $1^{\text {st }}$ Jan 2009 to $1^{\text {st }}$ March $2009 \rightarrow 60$ days

$$
\begin{aligned}
& 2 \mathrm{gm} \xrightarrow{15 \text { days }} 1 \mathrm{gm} \xrightarrow{15 \text { days }} \\
& \begin{array}{l}
0.5 \mathrm{gm} \xrightarrow{15} \text { days } \\
15 \text { days } \\
\\
\\
0.125 \mathrm{gm}
\end{array}
\end{aligned}
$$

50. For a chemical reaction $\mathrm{A} \rightarrow \mathrm{B}$, the rate of the reaction is $2 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$, when the initial concentration is $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Ans: 3
Sol: Concentration
Rate
$\frac{0.1}{0.05}=2$ times $\quad \frac{1.6 \times 10^{-2}}{2 \times 10^{-3}}=8$ times
$2^{3}=8$
\therefore Order $=3$
51. For the decomposition of a compound AB at 600K,

Ans: 2
Sol: Concentration
Rate
$\frac{0.4}{0.2}=2$ times $\quad \frac{11 \times 10^{-8}}{2.75 \times 10^{-8}}=4$ times
$\frac{0.6}{0.2}=3$ times $\quad \frac{24.75 \times 10^{-8}}{2.75 \times 10^{-8}}=9$ times $2^{2}=4$
\therefore Order $=2$
52. The rate equation for a reaction: $A \rightarrow B$ is $r=K[A]^{\circ}$.

Ans: $\frac{\mathrm{a}}{2 \mathrm{~K}}$
Sol: It is given that the reaction is of zero order

$$
\therefore \mathrm{t}_{1 / 2}=\frac{\mathrm{a}}{2 \mathrm{~K}}
$$

53. 30 cc of $\frac{M}{3} \mathrm{HCl}, 20 \mathrm{cc}$ of $\frac{M}{2} \mathrm{HNO}_{3}$ and 40 cc of $\frac{\mathrm{M}}{4} \mathrm{NaOH}$

Ans: 2
Sol: Total milli equivalence of $\mathrm{H}^{+}=30 \times \frac{1}{3}+$

$$
20 \times \frac{1}{2}=20
$$

Total milli equivalence of $\mathrm{OH}^{-}=40 \times \frac{1}{4}$

$$
=10
$$

Milli equivalence of H^{+}left $=20-10=10$

$$
\therefore\left[\mathrm{H}^{+}\right]=\frac{10}{1000} \mathrm{~g}-\mathrm{ions} / \mathrm{dm}^{3}=10^{-2}
$$

$$
\therefore \mathrm{pH}=2
$$

54. An aqueous solution containing 6.5 gm of NaCl of 90% purity was subjected to

Ans: $100 \mathrm{~cm}^{3}$
Sol: Wt. of $\mathrm{NaCl}=6.5 \times 0.9=5.85 \mathrm{gm}$
No. of equivalence of $\mathrm{NaCl}=\frac{5.85}{58.5}=0.1$
No. of equivalence of NaOH obtained

$$
=0.1
$$

Volume of 1 M acetic acid required for the neutralisation of $\mathrm{NaOH}=\frac{0.1 \times 1000}{1}$

$$
=100 \mathrm{~cm}^{3}
$$

55. The standard electrode potential for the half cell reactions are:
$\mathrm{Zn}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}$
$\mathrm{Fe}^{++}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}$

$$
\begin{aligned}
& \mathrm{E}^{\circ}=-0.76 \mathrm{~V} \\
& \mathrm{E}^{\circ}=-0.44 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{E}_{\text {cell }}=\mathrm{Eel}_{\text {(oxidation) })}+\text { Eel }_{\text {(reduction })}
$$

$$
=0.76-0.44=0.32 \mathrm{~V}
$$

56. $10^{-6} \mathrm{M} \mathrm{NaOH}$ is diluted 100 times.

Ans: Between 7 and 8
Sol: $\left[\mathrm{OH}^{-}\right]$in the diluted base $=\frac{10^{-6}}{10^{2}}=10^{-8}$
Total $\left[\mathrm{OH}^{-}\right]=10^{-8}+\left[\mathrm{OH}^{-}\right]$obtainable from water.
PH of an alkaline solution is always greater than 7.
57. In the electrolysis of acidulated water, it is desired to obtain 1.12 cc of hydrogen

Ans: 9.65 amp
Sol: No. of moles of $\mathrm{H}_{2}=\frac{1.12}{22400}$
No. of equivalence of hydrogen

$$
=\frac{1.12 \times 2}{22400}=10^{-4}
$$

No. of Faradays required $=10^{-4}$
\therefore Current to be passed in one second

$$
\begin{aligned}
& =96500 \times 10^{-4} \mathrm{Amp} \\
& =9.65 \mathrm{Amp}
\end{aligned}
$$

58. The one which decreases

Ans: Specific conductance

Sol: Number of ions/cc decreases with dilution and hence specific conductance decreases with dilution.
59. Vapour pressure of pure ' A ' is 70 mm of Hg at $25^{\circ} \mathrm{C}$.

Ans: 140 mm
Sol: $\quad 0.8 \times 70+0.2 \times P_{B}^{0}=84$
$\mathrm{P}_{\mathrm{B}}^{0}=\frac{28}{0.2}=140 \mathrm{~mm}$
60. A 6% solution of urea is isotonic

Ans: 1 M solution of glucose
Sol: $\quad \frac{6}{60}=\frac{x}{180}$
$x=18 \mathrm{~g}$
i.e., 18 g of glucose in 100 mL solution is isotonic with 6% urea solution.
18 g of glucose in 100 mL is 1 M

Ans: +0.32 V
Sol: Cell reaction is $\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$

