upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com.

R 325

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2005.

Fourth Semester

Electrical and Electronics Engineering

EE 234 — ELECTRICAL MACHINES — II

Time: Three hours

Maximum: 100 marks

Graph sheet may be supplied.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the causes of harmonics in the voltage and current waves of electrical machinery?
- 2. Define coil span factor.
- 3. What are the requirements to be met with, for paralleling of alternators?
- 4. List out two advantages of synchronising lamps used for synchronising.
- 5. Mention the requirements of starting the two types of 3 phase induction motors.
- 6. Give the relationship between the following in a 3 phase induction motor :
 - (a) Rotor input and rotor output.
 - (b) Starting torque and applied voltage.
- 7. Draw the torque-slip curves of double-squirrel cage motor.
- 8. What are the specific characteristic features of the repulsion motor?
- 9. How can the direction of rotation of AC series motor be reversed?
- 10. List out four applications of shaded pole induction motor.

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com. upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com. upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com.

PART B — $(5 \times 16 = 80 \text{ marks})$

(i) The following data pertains to two similar alternators: 3 ph, 6600 V,
 60 Hz, 1200 kVA Y connected, Resistance/ph = 1.05 Ω, Syn.reactance per ph. = 5 Ω.

Saturation curve:

Field current, A: 150 200 250 300 350 500

Terminal voltage, V: 5600 6490 7000 7400 7750 8500

When operating in parallel with a terminal voltage of 6600 V, the first machine supplies 90 A at 0.8 lag pf. If the load pf is 0.707 lag and total load is 1600 kN, determine the excitation of second alternator. (10)

- (ii) Write a note on hunting of alternators. (6)
- 12. (a) (i) Define voltage regulation. What are the methods available for determination of voltage regulation of alternator? (4)
 - (ii) Explain any one of the indirect methods to determine voltage regulation, stating the assumptions, requirements and also comment on the merit and demerit of the method if any. (12)

Or

- (b) (i) Give the constructional details of two types of alternators. (8)
 - (ii) A 3 ph, Y connected alternator has the following data:

Voltage required to be generated on O.C. is 4000 V at 50 Hz, speed is 500 rpm, stator slots/pole/ph is 3, conductors/slot is 12. Calculate the number of poles and useful flux/pole. Assume all conductors/ph to be connected in series and coil to be full pitched. (8)

- 13. (a) (i) In a 3 ph IM, maximum torque = 2 times the full load torque, starting torque = full load torque. Calculate the full load speed and speed at which maximum torque occurs. (8)
 - (ii) Deduce the power stages in a 3 ph. IM and also their relationships with gross torque Tg, overall efficiency, etc. (8)

Or

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com.

upload your college symposium/conference details,photo(s),video(s) in www.technicalsymposium.com.

		(b)	(i)	Obtain the approximate equivalent circuit of a 3 phase induction motor. (6)		
	A		(ii)	A 3 ph, 400 V IM gave the t	est readings :	
,				no load test : 4	00 V, 1250 W, 9 A	
				SC test : 1	50 V, 4 kW, 38 A	
				Draw the circle diagram.		
				If the normal rating is 14.5 full load current and slip.	91 kW, find from the circle diagram, t	he 10)
	14.	(a)	-	ain the various starting scho me and compare them.	emes adopted in 3 ph. IMs. Analyse ea	ich 16)
				Or		
_		(b)	(i)	Explain the different speed induction motor from state	l control schemes available for polypha r side.	ase (8)
			(ii)	What is the concept of do brief.	uble field revolving theory? Describe	in (8)
	15.	(a)	Write notes in brief on the following:			
			(i)	Induction generator and A.	C. series motor.	(8)
			(ii)	Permanent magnet motors	•	(8)
				Or	•	
		(b)	(i)	What are stepping motors?		(2)
			(ii)	Discuss the types of steppe	er motors with an application for each.	(3)
			(iii)	Explain the few importa	ant definitions associated with step	per (4)
			(iv)	Explain the operation of a sketches.	any one type of stepper motor with n	eat (7)
					upload your college	
					<u>symposium/conference</u> details,photo(s),video(s)	in
					uetalis,photo(s),video(s)	<u></u>