FEBRUARY - 2007

[KQ 740]

Sub. Code: 4231

SECOND B.Pharm. DEGREE EXAMINATION.

(Regulations 2004)

Paper II — PHARM ANALYSIS AND PHYSICAL CHEMISTRY

Time: Three hours Maximum: 90 marks

Theory: Two hours and Theory: 70 marks

forty minutes

M.C.Q.: Twenty minutes M.C.Q.: 20 marks

Answer Section A and B Separately.

PART I - PHARMACEUTICAL ANALYSIS

SECTION A

Answer any ONE

I. Long Essay: $(1 \times 20 = 20)$

- (a) What is buffer solution and explain about the buffer mixture of a weak acid and a weak base and its salts.
 - (b) Write a note on Henderson's equation. (10)

- (a) Give the mechanism of diazotization reaction and write a note on detection of end point in diazotization titration. (10)
- (b) Selecting suitable examples bring out the importance of ceric ammonium sulphate titrant in pharmaceutical analysis. (10)

Answer any THREE

II. Short notes: $(3 \times 5 = 15)$

- Write a note on Kjeldhal's method of nitrogen estimation.
- Explain the preparation and standardization of acetous perchloric acid volumetric solution, including the precautions to be taken.
- What is co-precipitation and post precipitation and give notes on various steps involved in gravimetric analysis.
- Explain the use of the masking and demasking agents in complexometry.
- Write a note on theories of acid-base indicators with examples.

[KQ 740]

FEBRUARY - 2007

PART II — PHYSICAL CHEMISTRY SECTION B

Answer any ONE

I. Long essay :

 $(1 \times 20 = 20)$

- (a) Define Raoult's law and establish it. Explain how it can be used for the experimental determination of the molecular weight of a dissolved substance.
- (b) Explain nernst distribution law and briefly explain its applications.
- (a) Define order of reaction and specify the types. Derive integrated rate law equation for first order.
 - (b) Explain on Debye-Huckel theory.

Answer any THREE

II. Short notes:

 $(3\times 5=15)$

 Define phase rule and explain the terms phase, component and degree of freedom. Calculate the enthalpy of formation of benzene from the following data

$$C_6H_6 + 7\frac{1}{2}O_2 \rightarrow 6CO_2 + 3H_2O$$
 $\Delta H = -3273 \text{ KJ}$
 $C + O_2 \rightarrow CO_2$ $\Delta H = -394 \text{ KJ}$
 $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ $\Delta H = -286 \text{ KJ}$

- State the second law of thermodynamics and explain the principle and working of carnot's cycle.
- Differentiate physical and chemical adsorption and describe the factors influencing adsorption.
- State and illustrate Hess's law of constant heat summation.

4