Math Bank - 7

1. The value of sin
$$\left[n\pi + (-1)^n \frac{\pi}{4}\right]$$
, $n \in I$ is
(a) 0 (b) $\frac{1}{\sqrt{2}}$
(c) $-\frac{1}{\sqrt{2}}$ (d) none of these
2. The value of $\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$
is
(a) 1 (b) 2
(c) -1 (d) none of these
3. $\sin^6 x + \cos^6 x$ lies between
(a) $\frac{1}{4}$ and 1 (b) $\frac{1}{4}$ and 2
(c) 0 and 1 (d) none of these
4. If $x = y \cos \frac{2\pi}{3} = z \cos \frac{4\pi}{3}$, then $xy + yz + zx =$
(a) -1 (b) 0
(c) 1 (d) 2
5. If $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3 - \cos 2\beta}$, then $\frac{\tan \alpha}{\tan \beta} =$
(a) 1 (b) -1
(c) $\sqrt{2}$ (d) $-\sqrt{2}$
6. If an angle θ be divided into two parts such that

6. If an angle θ be divided into two parts such that the tangent of one part is *m* times the tangent of the other, then their difference ϕ is given by

(a)
$$\cos \phi = \frac{m-1}{m+1} \cos \theta$$

(b) $\sin \phi = \frac{m-1}{m+1} \sin \theta$
(c) $\sin \phi = \frac{m-1}{m+1} \cos \theta$
(d) $\cos \phi = \frac{m-1}{m+1} \sin \theta$
If $P = \cos^n \theta + \sin^n \theta$ then $P = F$

- 7. If $P_n = \cos^n \theta + \sin^n \theta$, then $P_n P_{n-2} = k P_{n-4}$ where (a) k = 1 (b) $k = -\sin^2 \theta \cos^2 \theta$ (c) $k = \sin^2 \theta$ (d) $k = \cos^2 \theta$.
- 8. If $\cot \theta \tan \theta = \sec \theta$, then θ is equal to
 - (a) $2n\pi + \frac{3\pi}{2}$ (b) $n\pi + (-1)^n \frac{\pi}{6}$ (c) $n\pi + \frac{\pi}{2}$ (d) none of these
- 9. The general value of x satisfying the equation $\cot^2 (x + y) + \tan^2(x + y) + y^2 + 2y - 1 = 0$ is

(a)
$$(2n+1)\frac{\pi}{4}+1, n \in \mathbb{Z}$$

(b) $\frac{n\pi}{4} + 1, n \in Z$ (c) $n\pi \pm 1, n \in Z$ (d) none of these **10.** The solution of $\tan^2 9x = \cos 2x - 1$ is (a) $\frac{n\pi}{3}, n \in Z$ (b) $\frac{n\pi}{6}, n \in Z$ (b) $n\pi, n \in Z$ (d) none of these **11.** If $r \sin \theta = 3, r = 4$ (1 + sin θ), $0 \le \theta \le 2\pi$ then $\theta =$ (a) $\frac{\pi}{6}, \frac{\pi}{3}$ (b) $\frac{\pi}{6}, \frac{5\pi}{6}$ (c) $\frac{\pi}{3}, \frac{\pi}{4}$ (d) $\frac{\pi}{2}, \pi$

12. If we consider only the principal values of the inverse trigonometric functions, then the value of

$$\tan\left(\cos^{-1}\frac{1}{\sqrt{2}} - \sin^{-1}\frac{4}{\sqrt{17}}\right) \text{ is :}$$
(a) $\frac{\sqrt{29}}{3}$
(b) $\frac{29}{3}$
(c) $\frac{\sqrt{3}}{29}$
(d) none of these

13. The value of

$$\cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right); \frac{1}{2} \le x \le 1 \text{ is equal to}$$

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$ (d) 0

14. Two angles of a triangle are $\cot^{-1}2$ and $\cot^{-1}3$. Then, the third angle is

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{3\pi}{4}$
(c) $\frac{\pi}{6}$ (d) $\frac{\pi}{3}$
15. $\sum_{r=1}^{\infty} \cot^{-1} \left(r^2 + \frac{3}{4} \right) equals$
(a) $\frac{\pi}{2}$ (b) $\cot^{-1}2$
(c) $\frac{\pi}{6}$ (d) $\tan^{-1}2$

16. In a $\triangle ABC$, a = 13 cm, b = 12 cm and c = 5 cm. The

distance of A from BC is

	(a) $\frac{144}{1}$	65
	(a) $\frac{1}{13}$	(b) $\frac{65}{12}$
	(c) $\frac{60}{13}$	(d) $\frac{\frac{12}{25}}{13}$
	13	
17.	In any $\triangle ABC$, $4R \sin \theta$	$\frac{A}{2}$ sin $\frac{B}{2}$ sin $\frac{C}{2}$ =
	(a) 2 <i>r</i>	(b) <i>r</i>
	(c) 3 <i>r</i>	(d) none of these
18.	If $c^2 = a^2 + b^2$, then 4	s(s-a)(s-b)(s-c)
	(a) a^2b^2	(b) $c^2 a^2$
	(c) $b^2 c^2$	(b) $c^2 a^2$ (d) s^4
19.	If in a $\triangle ABC$	
	$\frac{2\cos A}{2\cos A} + \frac{\cos B}{2\cos A} + \frac{2\cos A}{2\cos A}$	$\frac{C}{a} = \frac{a}{a} + \frac{b}{a}$
		hc ca

=

- the value of $\angle A$ is (b) 60° (a) 45° (c) 30° (d) 90°
- 20. A person, standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is 60°, when he retreats 40m from the bank, he finds the angle to be 30°. The height of the tree and the breadth of the river are
 - (a) $10\sqrt{3}$ m, 10 m (b) $20\sqrt{3}$ m, 10m
 - (c) $20\sqrt{3}$ m, 20 m (d) none of these
- 21. A ballon is comiong down at the rate 4m/minute and at any point on the ground the angle of elevation is 45° and after 10 minute the angle of elevation is 30°, then the height of the ballon from the observer is
 - (b) $20(3+\sqrt{3})$ m (a) $20\sqrt{3}$ m
 - (c) $10(3 + \sqrt{3})$ m (d) $10\sqrt{3}$ m
- A flag-post 20m high standing on the top of a 22. house subtends an angle whose tangent is $\frac{1}{6}$ at a distance 70 m from the foot of the house. The height of the house is

	(a)	30 m	(b)	60 m
--	-----	------	-----	------

- (d) none of these (c) 50 m
- The shadow of a pole of height $(1 + \sqrt{3})$ metres 23. standing on the ground is found to be 2 metres longer when the elevation is 30° than when the elevation was α . Then α =
 - (a) 75° (b) 60° (d) 30°
 - (c) 45°
- 24. The coordiantes of the orthocentre of the triangle, formed by lines xy = 0 and x + y = 1, are

(a)
$$(0, 0)$$
 (b) $(2, -1)$

(c) (-2, 1) (d) none of these

- **25.** Through the point $P(\alpha, \beta)$, where $\alpha\beta > 0$ the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is drawn so as to form with coordinate axes a triangle of area S. If ab > 0, then the least value of S is (b) $2\alpha\beta$
 - (a) $\alpha\beta$ (c) $4\alpha\beta$
 - (d) none of these
- **26.** The point $(2t^2 + 2t + 4, t^2 + t + 1)$ lies on the line x + 2y = 1 for
 - (a) all real values of t (b) some real values of t $1 + \sqrt{7}$

(c)
$$t = \frac{-4\pm\sqrt{7}}{8}$$
 (d) none of these

- 27. The area of the region enclosed by $4 |x| + 5 |y| \le$ 20 is
 - (a) 10 (b) 20
 - (c) 40 (d) none of these
- **28.** The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is
 - (b) (-2, -2)(a) (0, 0)(d) (-1, -2)(c) (-1, -1)
- 29. Equations of the bisectors of the angles between the lines through the origin, the sum and product of whose slopes are respectively the arithmetic and the goemetric means of 9 and 16 is
 - (a) $24x^2 25xy + 2y^2 = 0$
 - (b) $25x^2 + 44xy 25y^2 = 0$
 - (c) $11x^2 25xy 11y^2 = 0$
 - (d) none of these
- The distance between the two lines represented by 30. the equation $9x^2 - 24xy + 16y^2 - 12x + 16y - 12 = 0$ is

(a)
$$\frac{8}{5}$$
 (b) $\frac{6}{5}$
(c) $\frac{11}{5}$ (d) none of these

31. If one of the lines of $my^2 + (1 - m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0then m is

(a) 1 (b) 2
(c)
$$-\frac{1}{2}$$
 (d) $\frac{1}{2}$

32. A circle of radius 2 lies in the first quadrant and touches both the axes of coordinates. The equation of the circle with centre at (6, 5) and touching the above circle externally is

(a)
$$x^2 + y^2 + 12x - 10y + 52 = 0$$

- (b) $x^2 + y^2 12x + 10y + 52 = 0$ (c) $x^2 + y^2 12x 10y + 52 = 0$
- (d) none of these
- **33.** Two rods of lengths *a* and *b* slide along the axes

which are rectangular is such a manner that their ends are concyclic. The locus of the centre of the circle passing through these points is

(a)
$$4(x^2 + y^2) = a^2 + b^2$$
(b) $x^2 - y^2 = a^2 - b^2$
(c) $4(x^2 - y^2) = a^2 - b^2$ (d) $x^2 + y^2 = a^2 + b^2$

34. If the coordinates of two consecutive vertices of a regular hexagon which lies completely above the *x*-axis, are (-2, 0) and (2, 0), then the equation of the circle, circumscribing the hexagon, is

(a)
$$x^2 + y^2 - 4\sqrt{3}y - 4 = 0$$

(b) $x^2 + y^2 + 4\sqrt{3}y - 4 = 0$
(c) $x^2 + y^2 - 4\sqrt{3}x - 4 = 0$
(d) $x^2 + y^2 + 4\sqrt{3}x - 4 = 0$

- **35.** If the line (y 2) = m (x + 1) intersects the circle $x^2 + y^2 + 2x - 4y - 3 = 0$ at two real distinct points, then the number of possible values of *m* is (a) 2 (b) 1
 - (c) any real value of m (d) none of these
- **36.** The length of the side of an equilateral triangle, inscribed in the parabola $y^2 = 8x$ so that one angular point is at the vertex, is
 - (a) $16\sqrt{3}$ (b) $8\sqrt{3}$ (c) $4\sqrt{3}$ (d) none of these
 - $\mathbf{I}_{\mathbf{x}}(\mathbf{A}, \mathbf{0}) = \mathbf{I}_{\mathbf{x}}(\mathbf{A}, \mathbf{0}) = \mathbf{I}_{\mathbf{x}}(\mathbf{A}$
- **37.** If (4, 0) is the vertex and *y*-axis, the directrix of a parabola, then its focus is

(a)	(8, 0)	(b)	(4, 0)

(c)	(0, 8)	(d)	(0, 4)

38. The length of the latus rectum of the parabola $25 [(x-2)^2 + (y-4)^2] = (4x - 3y + 12)^2$ is

(a) $\frac{16}{5}$ (b) $\frac{8}{5}$ (c) $\frac{12}{5}$ (d) none of these

- **39.** The parametric representation $(3 + t^2, 3t 2)$ represents a parabola with
 - (a) focus at (-3, -2) (b) vertex at (3, -2)
 - (b) directrix x = -5 (d) all of these
- **40.** The domain of the function

$$f(x) = \frac{1}{\sqrt{x^{12} - x^9 + x^4 - x + 1}}$$
 is
(a) $(-\infty, -1)$ (b) $(1, \infty)$
(c) $(-1, 1)$ (d) $(-\infty, \infty)$

- 41. The domain of the function $f(x) = \log_2 \log_3 \log_4 x$ is (a) $[4, \infty)$ (b) $(4, \infty)$ (c) $(-\infty, 4)$ (d) none of these
- **42.** The domain of the function

$$f(x) = \log_{10} [1 - \log_{10} (x^2 - 5x + 16)]$$
 is
(a) (2, 3) (b) [2, 3]

(c)
$$(2,3]$$
 (d) $[2,3)$

43. The domain of the function $f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}}$ is (a) $(-\infty, -2) \cup [4, \infty)$ (b) $(-\infty, -2] \cup [4, \infty)$ (c) $(-\infty, -2) \cup (4, \infty)$ (d) none of these If $\lim_{x \to 0} \frac{729^x - 243^x - 81^x + 9^x + 3^x - 1}{x^3} = k(\log 3)^3$, then k =(a) 4 (b) 5 (c) 6 (d) none of these **45.** If f(9) = 9 and f'(9) = 1, then $\lim_{x \to 9} \frac{3 - \sqrt{f(x)}}{3 - \sqrt{x}}$ is equal to (a) 0 (b) 1 (c) – 1 (d) none of these 46. $\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x-1)^2}$ is equal to (a) $\frac{1}{9}$ (b) $\frac{1}{6}$ (c) (d) none of these $\lim_{n \to \infty} \frac{\{x\} + \{2x\} + \{3x\} + \dots + \{nx\}}{n^2}, \text{ where }$ 47. $\{x\} = x - [x]$ denotes the fractional part of x, is (b) 0 (a) 1 (c) $\frac{1}{2}$ (d) none of these The value of b for which the function 48.

$$f(x) = \begin{cases} 5x - 4 \text{ if } 0 < x \le 1\\ 4x^2 + 3bx \text{ if } 1 < x < 2 \end{cases}$$
 is continuous at every points of its domain, is

(a)
$$\frac{13}{3}$$
 (b) 1

(c) 0 (d)
$$-1$$

(1, $x \le -1$

49. Let
$$f(x) = \begin{cases} |x|, -1 < x < 1, \text{ then} \\ 0, x \ge 1 \end{cases}$$

- (a) f is continuous at x = -1
- (b) *f* is differentiable at x = -1
- (c) *f* is continuous everywhere
- (d) f is differentiable for all x.
- **50.** The value of f(0) so that the function

$$f(x) = \frac{\left(256 - 8x\right)^{1/4} - 4}{16 - 4\left(64 + 3x\right)^{1/3}} \ (x \neq 0)$$

may be continuous every where is given by

51. The function f(x) is defined by

$$f(x) = \begin{cases} \log_{(4x-3)}(x^2 - 2x + 5), & x \in \left(\frac{3}{4}, 1\right) \cup (1, \infty) \\ 4, & x = 1 \end{cases}$$

- (a) is continuous at x = 1
- (b) is discontinuous at x = 1 since f(1⁻) does not exist though f(1⁺) eixts
- (c) is discontinuous at x = 1 since f(1⁺) does not exist though f(1⁻) exists
- (d) is discontinuous at x = 1 since neither f(1⁺) nor f(1⁻) exists
- **52.** Differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is

(a)
$$-\frac{(\log 10)^2}{(\log x)^2}$$
 (b) $\frac{(\log_x 10)^2}{(\log 10)^2}$
(c) $\frac{(\log_{10} x)^2}{(\log 10)^2}$ (d) $-\frac{(\log x)^2}{(\log 10)^2}$

53. If
$$y = f(x^3)$$
, $z = g(x^5)$, $f'(x) = \tan x$ and $g'(x) = \sec x$,
then the value of $\frac{dy}{dz}$ is
(a) $\frac{3}{5x^2} \cdot \frac{\tan x^3}{\sec x^5}$ (b) $\frac{5x^2}{3} \cdot \frac{\sec x^5}{\tan x^3}$
(c) $\frac{3x^2}{3} \cdot \frac{\tan x^3}{\cos x^5}$ (d) none of these

(c)
$$\frac{1}{5} \cdot \frac{1}{\sec x^5}$$
 (d) none of these
54. If $y = x^{(\log x)^{\log \log x}}$, then $\frac{dy}{dx}$ is equal to

(a)
$$\frac{y \log y}{x \log x}$$
 (2 $\log \log x + 1$)
(b) $\frac{x \log x}{y \log y}$ (2 $\log \log x + 1$)

(c)
$$\frac{2y\log y}{x\log x}$$
 (log log x + 1)

55. If
$$y = [(\tan x)^{\tan x}]^{\tan x}$$
, then $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is equal to
(a) 1 (b) 2
(c) 0 (d) none of these

56. The curves
$$x^3 - 3xy^2 = a$$
 and $3x^2y - y^3 = b$, where
a and *b* are constants, cut each other

(a) at an angle
$$\frac{\pi}{3}$$
 (b) at an angle $\frac{\pi}{4}$
(c) orthogonally (d) none of these

57. If $y = a \log_e x + bx^2 + x$ has its extreme values (i.e. maximum or minimum value) at x = 1 and x = 2, then the values of a and b are

(a)
$$a = -\frac{1}{6}, b = \frac{4}{3}$$
 (b) $a = -\frac{4}{3}, b = \frac{1}{6}$
(c) $a = \frac{4}{3}, b = -\frac{1}{6}$ (d) none of these

58. The range of values of x for which the function $f(x) = \frac{x}{\log x}$, x > 0 and $x \neq 1$, may be decreasing,

(a)
$$(0, e)$$
 (b) (e, ∞)

 (c) $(0, e) \setminus \{1\}$
 (d) none of these

59. A point on the curve $\frac{x^2}{4} + \frac{y^2}{16} = 1$ where the tangent is equally inclined to the axes is

(a)
$$\left(\frac{2}{\sqrt{5}}, \frac{-8}{\sqrt{5}}\right)$$
 (b) $\left(\frac{2}{\sqrt{5}}, \frac{8}{\sqrt{5}}\right)$
(c) $\left(\frac{-2}{\sqrt{5}}, \frac{8}{\sqrt{5}}\right)$ (d) all of the above

60.
$$\int \frac{e^x (1 + \sin x)}{(1 + \cos x)} dx$$
 is equal to
(a) $e^x \cot x$ (b) $\sin(\log x)$
(c) $e^x \tan \frac{x}{2}$ (d) $\log \tan x$

61.
$$\int 7^{7^x} \cdot 7^x \cdot 7^x \, dx$$
 is equal to

(a)
$$\frac{7^{7^{x}}}{(\log 7)^{3}} + C$$
 (b) $\frac{7^{7^{x}}}{(\log 7)^{2}} + C$
(c) $7^{7^{x}} \cdot (\log 7)^{3} + C$ (d) none of these

62.
$$\int \frac{\sqrt{1 - \sin x}}{1 + \cos x} \cdot e^{-x/2} dx \text{ is equal to}$$

(a) $\sec \frac{x}{2} \cdot e^{-x/2} + C$ (b) $-\sec \frac{x}{2} \cdot e^{-x/2} + C$

(c)
$$\tan \frac{x}{2} \cdot e^{-x/2} + C$$
 (d) none of these

63. If
$$\int f(x) dx = g(x) + C$$
, then $\int f(ax+b) dx$ is equal to
(a) $g(ax+b) + C$ (b) $ag(ax+b) + C$
(c) $\frac{1}{a}[g(ax+b) + C]$ (d) none of these

64.
$$\int_{0}^{a} \frac{dx}{a + \sqrt{a^2 - x^2}}$$
 is equal to
(a) $\frac{\pi}{2} + 1$ (b) $\frac{\pi}{2} - 1$
(c) $1 - \frac{\pi}{2}$ (d) none of these

- 65. The value of the integral $\int_{0}^{\pi} \frac{\sin 2kx}{\sin x} dx$, where $k \in I$, is (a) $\frac{\pi}{2}$ (b) π
 - (c) 0 (d) none of these
- 66. $\int_{-1}^{1} [x] dx$, where [.] denotes the greatest integer function, is equal to
- (a) 0 (b) 1 (c) -1 (d) none of these 67. $\int_{-1}^{2} [x^2] dx$ is equal to
 - (a) $10 2\sqrt{3} 2\sqrt{2}$ (b) $10 + 2\sqrt{3} 2\sqrt{2}$
 - (c) $10 2\sqrt{3} + 2\sqrt{2}$ (d) none of these
- **68.** The degree of differential equation

$$x = 1 + \left(\frac{dy}{dx}\right) + \frac{1}{2!}\left(\frac{dy}{dx}\right)^2 + \frac{1}{3!}\left(\frac{dy}{dx}\right)^3 + \dots \text{ is}$$

a) three (b) one

- (c) not defined (d) none of these
- **69.** The solution of the equation

$$y \sin x \frac{dy}{dx} = \cos x \left(\sin x - \frac{y^2}{2} \right),$$

given $y = 1$ when $x = \frac{\pi}{2}$ is
(a) $y^2 = \sin x$ (b) $y^2 = 2 \sin x$
(c) $x^2 = \sin y$ (d) $x^2 = 2 \sin y$
The order of the differential equation when

70. The order of the differential equation whose general solution is given by

$$y = c_1 \cos (2x + c_2) - (c_3 + c_4) a^{x + c_5} + c_6 \sin (x - c_7)$$

is
(a) 3 (b) 4
(c) 5 (d) 2

- **71.** The inequality |z-4| < |z-2| represents the region given by
 - (a) Re (z) > 0 (b) Re (z) < 0
 - (c) $\operatorname{Re}(z) > 3$ (d) none of these
- 72. The centre of a regular polygon of *n* sides is located at the point z = 0, and one of its vertex z_1 is known. If z_2 be the vertex adjacent to z_1 , then z_2 is equal to

(a)
$$z_1 \left(\cos \frac{2\pi}{n} \pm t \sin \frac{2\pi}{n} \right)$$

(b) $z_1 \left(\cos \frac{\pi}{n} \pm t \sin \frac{\pi}{n} \right)$
(c) $z_1 \left(\cos \frac{\pi}{2n} \pm t \sin \frac{\pi}{2n} \right)$
(d) none of these

- 73. If $\sqrt[3]{a-ib} = x iy$, then $\sqrt[3]{a+ib} =$ (a) x + iy (b) x - iy(c) y + ix (d) y - ix
- 74. The inequality |z-4| < |z-2| represents the region given by
 - (a) Re (z) > 0 (b) Re (z) < 0(c) Re (z) > 3 (d) none of these
- 75. The centre of a regular polygon of *n* sides is located at the point z = 0, and one of its vertex z_1 is known. If z_2 be the vertex adjacent to z_1 , then z_2 is equal to

(a)
$$z_1 \left(\cos \frac{2\pi}{n} \pm t \sin \frac{2\pi}{n} \right)$$

(b) $z_1 \left(\cos \frac{\pi}{n} \pm t \sin \frac{\pi}{n} \right)$
(c) $z_1 \left(\cos \frac{\pi}{2n} \pm t \sin \frac{\pi}{2n} \right)$
(d) none of these

- 76. If $\sqrt[3]{a-ib} = x iy$, then $\sqrt[3]{a+ib} =$ (a) x + iy (b) x - iy(c) y + ix (d) y - ix
- **77.** The solution of the equation |z| z = 1 + 2i is
 - (a) $\frac{3}{2} 2i$ (b) $\frac{3}{2} + 2i$ (c) $2 - \frac{3}{2}i$ (d) none of these
- **78.** The number of numbers lying between 100 and 500 that are divisible by 7 but not by 21 is
 - (a) 57 (b) 19
 - (c) 38 (d) none of these
- **79.** Let S_n denotes the sum of *n* terms of an A.P. whose first term is *a*. If the common difference

$$d = S_n - k S_{n-1} + S_{n-2} \text{ then } k =$$
(a) 1
(b) 2
(c) 3
(d) none of

80. If $5^{1+x} + 5^{1-x}$, $\frac{a}{2}$ and $25^x + 25^{-x}$ are three consecutive terms of an A.P., then the values of *a* are given by (a) $a \ge 12$ (b) a > 12(c) a < 12 (d) $a \le 12$

these

81. If *a*, *b*, *c* are in A.P. and *p* is the A.M. between *a* and *b* and *q* is the A.M. between *b* and *c*, then

(a) a is the A.M. between p and q

- (b) b is the A.M. between p and q
- (c) c is the A.M. between p and q
- (d) none of these
- 82. If the roots of the equation

 $(a^{2} + b^{2}) x^{2} + 2 (bc + ad) x + (c^{2} + d^{2}) = 0$ are real, then a^2 , bd, c^2 are in

- (a) A.P. (b) GP.
- (c) H.P. (d) none of these
- 83. If α , β are irrational roots of $ax^2 + bx + c = 0$ (a, b, c \in Q), then
 - (a) $\alpha = \beta$
 - (b) $\alpha\beta = 1$

86.

- (c) α and β are conjugate roots
- (d) $\alpha^2 + \beta^2 = 1$
- 84. The value of *p* for which the quadratic equation $x^2 - px + p + 3 = 0$ has reciprocal roots is
 - (a) 1 (b) -1 (c) 2 (d) -2
- 85. The roots of the equation $2^{x+2} \cdot 3^{\frac{3x}{x-1}} = 9$ are given by

(a)
$$\log_2\left(\frac{2}{3}\right), -2$$
 (b) $3, -3$
(c) $-2, 1-\frac{\log 3}{\log 2}$ (d) $1-\log_2 3, 2$
 ${}^{15}C_8 + {}^{15}C_9 - {}^{15}C_6 - {}^{15}C_7 =$
(a) 8 (b) 0

- (d) none of these (c) 6
- 87. There are 4 candidates for the post of a lecturer in Mathematics and one is to be selected by votes of 5 men. The number of ways in which the votes can be given is

(a)	1048	(b)	1024
(c)	1072	(d)	none of these

88. The number of ways in which a committee of 5 can be chosen from 10 candidates so as to exclude the youngest if it includes the oldest, is (a) 104

(a)	196	(b) 178	
< >	202	(1)	C .1

- (d) none of these (c) 202
- **89.** There are 10 lamps in a hall. Each one of them can be switched on independently. The number of ways in which the hall can be illuminated is (a) 10^2
 - (b) 18 (c) 2¹⁰ (d) 1023
- 90. If A is the sum of the odd terms and B the sum of even terms in the expansion of $(x + a)^n$, then $A^2 - B^2 =$ (a) $(x^2 + a^2)^n$ (b) $(x^2 - a^2)^n$

(c) $2(x^2-a^2)^n$ (d) none of these

91. The coefficient of x^{53} in the expansion

$$\sum_{m=0}^{100} C_m (x-3)^{100-m} \cdot 2^m \text{ is}$$
(a) ${}^{100}C_{47}$ (b) ${}^{100}C_{53}$
(c) $-{}^{100}C_{53}$ (d) $-{}^{100}C_{100}$

- The coefficient of x^n in the expansion of $(1 + x)^{2n}$ and 92. 21 the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ are in the ratio
 - (a) 4:1 (b) 3:1
- (c) 2:1 (d) 1:1 93. The sum of rational terms in the expansion of
 - $(\sqrt{2} + 3^{1/15})^{10}$ is (a) 31 (b) 41
 - (c) 51 (d) none of these
- **94.** The coefficient of x^n in the series
 - $\frac{1+x}{1!} + \frac{(1+x)^2}{2!} + \frac{(1+x)^3}{3!} + \dots$ is (b) $\frac{4e}{n!}$ (a) $\frac{2e}{n!}$
 - (d) none of these
- (c) $\frac{e}{n!}$ 95. The sum of the series $\frac{1}{1\cdot 2} + \frac{1\cdot 3}{1\cdot 2\cdot 3\cdot 4} + \frac{1\cdot 3\cdot 5}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6} + \dots$ is (b) $\sqrt{e} - 1$ (a) \sqrt{e} (a) \sqrt{e} (b) $\sqrt{e-1}$ (c) $\sqrt{e-2}$ (d) none of these **96.** The sum of the series $1 + \frac{3}{2!} + \frac{7}{3!} + \frac{15}{4!} + \dots \infty$ is (a) e(e+1)

(c)
$$e(e-1)$$
 (d) $3e$
97. $\frac{2}{1!} + \frac{4}{2!} + \frac{6}{5!} + ... \infty$ is equal to

1!
 3!
 5!

 (a)

$$e+1$$
 (b)
 $e-1$

 (c)
 e^{-1}
 (d)
 e

98. If $A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1 \end{bmatrix}$, then det. (adj (adj A)) is

(a)
$$(14)^4$$
 (b) $(14)^3$

- (c) $(14)^2$ (d) $(14)^1$
- 99. If A is symmetric as well as skew symmetric matrix, then A is

(a) diagonal (b) null

- (c) triangular (d) none of these
- **100.** If A is a singular matrix, then adj A is
 - (a) non-singular (b) singular
 - (d) not defined (c) symmetric

Answer Keys

1. (b)	2. (b)	3. (a)	4. (b)	5. (c, d)	6. (b)
7. (b)	8. (b)	9. (a)	10. (c)	11. (c)	12. (c)
13. (c)	14. (a, d)	15. (a)	16. (b)	17. (a)	18. (c)
19. (a)	20. (a)	21. (c)	22. (c)	23. (c)	24. (a)
25. (b)	26. (d)	27. (c)	28. (a)	29. (a)	30. (c)
31. (a)	32. (c)	33. (c)	34. (a)	35. (c)	36. (a)
37. (a)	38. (b)	39. (b)	40. (d)	41. (b)	42. (a)
43. (a)	44. (c)	45. (b)	46. (a)	47. (b)	48. (a)
49. (a)	50. (d)	51. (b)	52. (b)	53. (b)	54. (a)
55. (c)	56. (b)	57. (a)	58. (c)	59. (a)	60. (a, c)
61. (b)	62. (a)	63. (b)	64. (b)	65. (c)	66. (c)
67. (a)	68. (b)	69. (a)	70. (c)	71. (b)	72. (c)
73. (a)	74. (a)	75. (a)	76. (c)	77. (b)	78. (a)
79. (b)	80. (b)	81. (c)	82. (d)	83. (c)	84. (b)
85. (b)	86. (a)	87. (d)	88. (b)	89. (c)	90. (c)
91. (b)	92. (c)	93. (b)	94. (c)	95. (d)	96. (a)
97. (b)	98. (b)	99. (d)	100. (c)		