12/21/11 Code: A-20

Code: DE06
Time: 3 Hours

Subject: BASIC ELECTRONICS
Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

- a. The colour band sequence of a resistor is Yellow, Violet, Orange and Gold. The range in which its value must lie so as to satisfy the tolerance specified is between
 - (A) $44.66 \, \text{K} \Omega$ and $49.35 \, \text{K} \Omega$
- **(B)** 44.65 K Ω and 49.35 K Ω
- (C) $44.65 \,\mathrm{K}\Omega$ and $49.36 \,\mathrm{K}\Omega$
- **(D)** $45 \,\mathrm{K}\Omega$ and $49.34 \,\mathrm{K}\Omega$
- b. With increasing temperature, the resistivity of an intrinsic semiconductor decreases. This is because, with the increase of temperature
 - (A) The carrier concentration increases but the mobility of carriers decreases.
 - **(B)** Both the carrier concentration and mobility of carriers decreases.
 - (C) The carrier concentration decreases, but the mobility of carriers increases.
 - (D) The carrier concentration remains the same but the mobility of carriers decreases.
- c. At room temperature of 25°C, the barrier Potential for Silicon is 0.7V. Its value at 0°C will be
 - **(A)** 0.7 V.

(B) 0.65 V.

(C) 0.75 V.

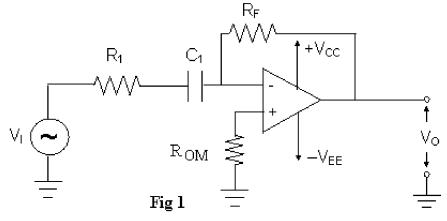
- **(D)** 0.55 V.
- d. Which of the following is a unipolar device?
 - (A) P-N junction diode
- (B) Zener diode

(C) Tunnel diode

- **(D)** Schottky diode
- e. On applying a Positive voltage signal to the base of a normally biased N-P-N CE transistor amplifier
 - (A) Base current will fall.
 - (B) Collector current will fall.
 - (C) Emitter current will fall.
 - (D) Collector voltage will become less positive.
- f. An N-channel JFET has Pinch-off Voltage of $V_P = -4V$ and given that $V_{GS} = -1V$, then

the minimum V_{DS} for the device to operate in the Pinch-off region will be

(A) +1V


(B) +3V

(C) +4V

- **(D)** +5V
- g. The extremely high input impedance of a MOSFET is Primarily because of
 - (A) Absence of its channel
 - (B) Depletion of current carriers
 - (C) Extremely small leakage current of its gate capacitor
 - (**D**) Negative V_{GS}
- h. When two identical SCRs are placed back-to-back in series with a load and if each is fired at 90°, then the voltage across the load will be
 - (A) $\frac{2}{\pi}$ × Peak Voltage
- (B) Zero
- (C) $\frac{1}{\pi}$ × Peak Voltage
- (D) $\frac{1}{\sqrt{2}} \times \text{Peak Voltage}$
- i. The most commonly used type of electron emission in electron tubes is
 - (A) Photo-electron emission.
- **(B)** Thermionic emission.

(C) Field emission.

- **(D)** Secondary emission.
- j. In the differentiating circuit shown in Fig. 1, the function of resistor R_1 is to

- (A) Enable the circuit to approach ideal differentiator
- (B) Maintain high input impedance
- (C) Eliminate high frequency noise spikes
- (D) Prevent oscillations at high frequencies

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

12/21/11 Code: A-20

Q.2 a. What is an inductor? Explain briefly various types of fixed inductors employed in electronic industry. What is the role of variable inductors in radio receiver?
(6)

b. Differentiate between a current source and a voltage source. Give their graphical representations. How can they be converted from one another? Determine the current flowing through 7Ω resistor in the circuit shown in Fig. 2 by using source transformation technique. (10)

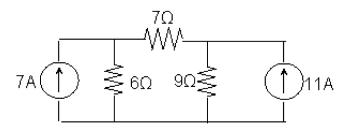


Fig 2

- Q.3 a. "As regards conduction of current in concerned, a semiconductor is bipolar in nature whereas a metal is unipolar"-Justify (or) nullify the above statement.
 (7)
 - b. Explain what do you understand by intrinsic, N-type and P-type semiconductors. Discuss the position of Fermi level in each case (9)
- Q.4 a. Discuss the reasons for the existence of a depletion layer in a P-N junction. Relate it to the rectifying properties of a P-N junction. (10)
 - b. What is a Zener diode? Explain, with the help of a circuit diagram. How Zener diode can be used as a voltage regulator? (6)
- Q.5 a. Explain the operation of JFET as an analog switch. (7)
 - b. Compare the characteristics of CB, CE and CC configurations of a transistor. Draw the circuit of a common collector transistor configuration and explain its operation. Also derive the relation between γ and α current amplification factors.
- Q.6 a. Explain with a diagram the operation of Positive adjustable voltage regulator and derive an expression for output voltage. (9)
 - b. In a centre-tap full-wave rectifier, the load resistance R_L =1K Ω . Each diode has a forward-bias dynamic resistance r_d of 10Ω . The voltage across half the secondary winding is $220 \sin 314t$. Find
 - (i) the Peak value of current

12/21/11 Code: A-20

(ii) the dc or average value of current

- (iii) the rms value of current
- (iv) the ripple factor and
- (v) the rectification efficiency

(7)

Q.7 a. Why are MOSFETs available in both enhancement and depletion modes, while JFETs operate almost invariably in the depletion modes.(4)

- b. Sketch the output characteristics for N-channel JFET with gate-source voltage shorted (i.e. $V_{GS}=0$). How Ohmic, Pinch-off and Breakdown regions are created? (8)
- c. For an N-channel JFET, I_{DSS} = 8.7mA, V_P = -3V and V_{GS} = -1V, then find the value of drain current (I_D).

(4)

- Q.8 a. Describe the structure, symbol and operation of SCR with the help of suitable diagrams. (8)
 - b. What is monolithic IC? Explain photolithographic Process in monolithic IC Production. (8)
- Q.9 a. Explain the following terms as referred to an operational amplifier
 - (i) Input offset Voltage
 - (ii) Input offset Current
 - (iii) Slew Rate
 - (iv) CMRR (12)
 - b. An operational amplifier shown in Fig.3 has feedback resistor R_f = 12 K Ω and the resistances in the input sides are R_{S1} =12K Ω , R_{S2} =2K Ω and R_{S3} =3K Ω . The corresponding inputs are V_{i1} =+9V, V_{i2} =-3V and

 $V_{i3} = -1$ V. Non-inverting terminal is grounded. Calculate the output voltage. (4)

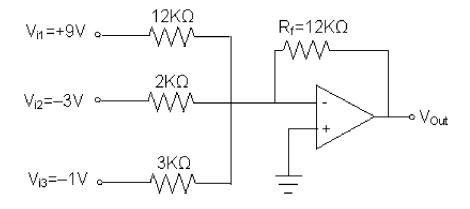


Fig 3