Your Roll No

6189

B.Sc.(Hons.) Computer Science / III Sem. J Paper 303 : ALGEBRA

(Admissions of 2001 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt all questions

All questions carry equal marks

Use of calculator is permitted

- Define a group Let $G = \{0, 1, 2\}$ and define an operation * on G by a * b = |a b| for a, b $\in G$ Is G a group with respect to * ? Justify your answer
- Define a monoid Prove that if in a monoid every element x different from the identity e satisfies $x^2 = e$, then the monoid is commutative
- 3 Let f R → S and g S → T be morphism of rings Then show that the composition gof R → T is a morphism and further show that Ker(gof) = Ker(f) if g is an isomorphism

- Let $R = \{a + ib \sqrt{3} / a, b \in \mathbb{Z} \}$, where \mathbb{Z} is set of all integers Is R a subring of \mathbb{C} , ring of complex numbers?
- 5 Draw the Hasse diagram representing the partial ordering relation {(a, b) a divides b} on {1, 2, 3, 4, 6, 8, 12} Identify the maximal and minimal elements Give chains and anti-chains and find maximum length of chain
- 6 Determine the dimension of $n \times n$ symmetric matrices over \mathbb{R} Justify your answer
- 7 Define a convex set in \mathbb{R}^n . Show that the set of all elements $(x, y) \in \mathbb{R}^2$ which satisfies $3x + 5y \le 4$, is a convex set
- 8 Let L $\mathbb{R}^2 \to \mathbb{R}^3$ be linear map such that L (1, 2) = (1, 3, -1) and L (2, -3) = (2, -1, 4). Find L (1, 0) and L (0, 1)
- What is the dimension of the space of solutions of the following system of linear equations?

$$2x + 7y = 0$$
$$x - 2y + z = 0$$

Prove that a mapping $F V \rightarrow W$ has an inverse iff it is both injective and surjective

2

6189

Let V be a vector space with a scalar product <, > Let V_1 , V_2 , , V_n be vectors which are mutually perpendicular and such that $||V_1|| \neq 0$ $1 \leq i \leq n$ Let V be an element of V, and let C_i be the component of V along V_i Let a_1 , a_2 , , a_n be numbers. Then show that

$$\|V - \sum_{k=1}^{n} C_k V_k\| \le \|V - \sum_{k=1}^{n} a_k V_k\|$$

- Find an orthonormal basis of the subspace W of C^3 spanned by $V_1 = (1, 1, 0)$ and $V_2 = (1, 2, 1 1)$
- 13 Find the eigen values and a basis for the eigenspaces of the matrix

$$\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 5 & -1 \\
0 & 0 & 7
\end{array}\right)$$

- 14 Find the volume of the parallelopiped spanned by the following vectors in 3-space (-1, 2, 1), (2, 0, 1), (1, 3, 0).
- 15 Classify and sketch the curve $4x^2 + 2\sqrt{2}xy + 3y^2 = 1$