ALGEBRA

Quadratic Equations

Remainder theorem: If f(x) is divided by (x - a), the remainder is f(a).

Factor theorem: If (x - a) is a factor of f(x), then f(a) = 0.

Involution and Evalution

- > $(a + b)^2 = a^2 + b^2 + 2ab$ > $(a - b)^2 = a^2 + b^2 - 2ab$ > $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$ > $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$ > $a^2 - b^2 = (a - b) (a + b)$ > $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$ > $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$ > $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$ > $a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$ > if a + b + c = 0
- $> a^3 + b^3 + c^3 = 3abc$

Linear Equations

A pair of linear equations in two variables, say x and y, is said to form a system of simultaneous linear equations in two variables.

The general form of a system of linear equations in two variables x and y is

 $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$

Quadratic Equations

> General form of quadratic equation is $ax^{2} + bx + c = 0$ Roots are $\frac{-b \mp \sqrt{b^{2} - 4ac}}{2a}$ Sum of roots = $\frac{-b}{a}$ Product of roots = $\frac{c}{a}$ > If $b^{2} - 4ac = 0$ real and equal > $b^{2} - 4ac > 0$ real and distinct > $b^{2} - 4ac < 0$ imaginary

Forming Equation from roots:

If α and β are the roots of any quadratic equation then that equation can be written in the form

 $x^{2} - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^{2} - (sum of the roots) x + Product of the roots = 0.$

Cubic Equations

Cubic equation $ax^3 + bx^2 + cx + d = 0$ will have three roots (say x_1, x_2, x_3). Then

- > Sum = $x_1 + x_2 + x_3 = \frac{-b}{a}$
- > Sum of Products (taken 2 at a time) = $x_1x_2 + x_2x_3 + x_3x_1 = \frac{c}{a}$
- $\Rightarrow \text{ Product} = x_1 x_2 x_3 = \frac{-d}{a}$

Important: If the graph of given equation cuts x-axis n times then it will have n real roots.

Ex.2
$$y = \frac{1}{2 + \frac{1}{3 + \frac{1}{2 + \frac{1}{3 + \dots}}}}$$
. What is the value of y?
(1) $\frac{\sqrt{13} + 3}{2}$ (2) $\frac{\sqrt{13} - 3}{2}$ (3) $\frac{\sqrt{15} + 3}{2}$ (4) $\frac{\sqrt{15} - 3}{2}$ (5) None of these
Answer: (4)
Ex.3 One root of $x^2 + kx - 8 = 0$ is square of the other, then, the value of k is
(1) 2 (2) 8 (3) - 8 (4) - 2 (5) 0
Hint: Let the roots be α , α^2 .

Inequalities, Maxima and Minima

Intervals

(a, b) means
$$a < x < b$$

(a, b] means $a < x \le b$
[a, b] means $a \le x \le b$

> For inequalities questions always go with the options and eliminate the wrong options by taking values for the variable in the given range.

Some Important Points

- \blacktriangleright If a > b and b > c, then a > c.
- > If a > b and c is any real number, then a + c > b + c and a c > b c.
- > If a > b > 0, then $\frac{1}{a} < \frac{1}{b}$.
- > If x > y > 0, then $log_a x > log_a y$, if a > 1 and $log_a x < log_a y$, if 0 < a < 1.
- \blacktriangleright A.M \geq G.M \geq H.M
- $a^{2} + b^{2} + c^{2} \ge ab + bc + ca$
- > $(n!)^2 > n^n$ for n > 2.
- $\blacktriangleright \quad 2 \leq \left(1 + \frac{1}{n}\right)^n \, \leq 3 \text{ for any integer } n.$
- > $a^2b + b^2c + c^2a ≥ 3abc$.

$$\succ \quad \frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} \ge 4$$

- \succ $a^4 + b^4 + c^4 + d^4 > 4abcd.$
- ▶ If $(x a)(x b) \ge 0$, a < b, then $x \le a$ or $x \ge b$.

> If (x − a) (x − b) ≤ 0, a < b, then a ≤ x ≤ b.</p>
> If |x − a| > b then x > a + b or x < a − b</p>
> If |x − a| < b, then a − b < x < a + b.</p>
> |a + b| ≤ |a| + |b|
> |a − b| ≥ |a| − |b|
Ex.4 Largest value of min (2 + x², 6 − 3x), when x > 0, is
Sol. For this type of questions,
Take, 2 + x², 6 − 3x
⇒ x² + 3x − 4 = 0
∴ x = −4, 1. (Since it is given x > 0 ⇒ x = 1)
Put x = 1 in either 2 + x² or 6 − 3x
So, the answer is 2 + 1² = 3.

Maximum /Minimum value of Quadratic Equation

- 1. If the sum of two quantities is constant, then the product will be maximum, if both are equal.
- 2. If the product is constant, then the sum will be minimum, if both are equal.
- 3. The equation $ax^2 + bx + c = 0$, will have maximum value when a < 0 and minimum value when a > 0.

The maximum or minimum values are given by $\frac{4ac-b^2}{4a}$, and will occur at x = $\frac{-b}{2a}$

Functions

> If
$$f(x) = x^3 - 3x^2 + 2x$$
, then $f(a) = a^3 - 3a^2 + 2a$.

- $\succ \quad fog(x) = f\{g(x)\}$
- \succ gof(x) = g{f(x)}
- > If f(x) = f(-x), then f(x) is an even function. E.g. x^2
- > If f(x) = -f(-x), then f(x) is an odd function. E.g. x^3
- > If $f(x) = y \Rightarrow x = f^{-1}(y)$

Finding the inverse of a given function.

Ex.5 Find the inverse of $y = \frac{-2}{x-5}$ and determine whether the inverse is also a function.

- **Sol.** Since the variable is in the denominator, this is a rational function. Here's the algebra:
 - **Step 1:** Write the original function $y \neq \frac{-2}{x-5}$
 - **Step 2:** Represent x in terms of y in the equation. $x = \frac{5y-2}{y}$
 - **Step 3:** Replace the x's and y's with each other. $y = \frac{5x-2}{x}$

Thus, the inverse function is
$$y = \frac{5x - 2}{x}$$
.

Important: If f and g are two functions defined from set A in to set B, then

- 1. Sum / difference of two functions is $(f \pm g) (x) = f(x) \pm g(x)$
- 2. Product of two functions is $(f \times g)(x) = f(x) \times g(x)$

3. Division of two functions is
$$\left(\frac{f}{g}\right)$$
 (x) = $\frac{f(x)}{g(x)}$.

Points on graph

- > If the graph is symmetrical about y-axis then it is even function.
- > If the graph is symmetrical about origin then it is odd function.
- > For graph questions it is always better to take values and check the options.

Some Important graphs

Logarithms

Properties of Logarithms

- $\succ \log_1 1 = 0$
- ➢ log_aa = 1
- ≻ $log_a a^m = m$

≻
$$\log_{a^n} a = \frac{1}{n}$$

- $\succ \log_{b^n} a^m = \frac{m}{n} \log_b a$
- \succ log_am + log_an = log_amn
- \triangleright log_am log_an = log_am/n

$$\succ \quad \log_{b}a = \frac{\log a}{\log b} = \frac{1}{\log_{a} b}$$

- ≻ a ^{log}a^m = m
- > If $log_a N = x$, then $N = a^x$.

