Signature and Name of Invigilate	or OMR Shee	t No.	:					
8				o be fill				
l. (Signature)	KOII	No.						
(Name)			(In figu	res as	per a	dmiss	sion c	card
2. (Signature)	Roll No							
(Name)			((In wo	rds)			
D 0500	PAPER – II Test	Boo	oklet 1	No.				

D-8708

COMPUTER SCIENCE AND

Time: 11/4 hours [Maximum Marks: 100 **APPLICATIONS**

Number of Pages in this Booklet: 8

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of fifty multiple-choice type of questions.
- At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the question booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the Test Booklet Number should be entered in the OMR Sheet and the OMR Sheet Number should be entered on this Test
- 4. Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the oval as indicated below on the correct response against each item.

Example: (A) (B)

where (C) is the correct response.

- Your responses to the items are to be indicated in the Answer Sheet given **inside the Paper I booklet only**. If you mark at any place other than in the ovals in the Answer Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your name or put any mark on any part of the test booklet, except for the space allotted for the relevant entries, which may disclose your identity, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is NO negative marking.

परीक्षार्थियों के लिए निर्देश

Number of Questions in this Booklet: 50

- 1. पहले पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में पचास बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे जिसकी जाँच आपको अवश्य करनी है:
 - प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका
 - (ii) कवर पष्ट पर छपे निर्देशानसार प्रश्न-पस्तिका के पष्ट तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पुरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ / प्रश्न कम हों या दबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रृटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-प्स्तिका की ऋम संख्या OMR पत्रक पर अंकित करें और OMR पत्रक की ऋम संख्या इस प्रश्न-पस्तिका पर
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं। आपको सही उत्तर के दीर्घवृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : (A) (B) (D) जबकि (C) सही उत्तर है।

5. प्रश्नों के उत्तर **केवल प्रश्न पत्र ! के अन्दर दिये गये** उत्तर-पत्रक पर ही अंकित करने हैं। यदि आप उत्तर पत्रक पर दिये गये दीर्घवृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते है, तो उसका मृल्यांकन नहीं होगा।

- 6. अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 8. यदि आप उत्तर-पुस्तिका पर अपना नाम या ऐसा कोई भी निशान जिससे आपकी पहचान हो सके, किसी भी भाग पर दर्शाते या अंकित करते हैं तो परीक्षा के लिये अयोग्य घोषित कर दिये जायेंगे।
- 9. आपको परीक्षा समाप्त होने पर उत्तर-पुस्तिका निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद अपने साथ परीक्षा भवन से बाहर न
- 10. केवल नीले / काले बाल प्वाईंट पैन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तर के लिए अंक नहीं काटे जायेंगे।

Computer Science and Applications

PAPER-II

Note: This paper contains **fifty** (50) objective-type questions, each question carrying **two** (2) marks. Attempt **all** of them.

The channel capacity of a band-limited Gaussian channel is given by :

1.

D - 8708

	(A)	$B \log_2 \left(2 + \frac{S}{N} \right)$		(B)	B log	$g_2\left(1+\frac{S}{N}\right)$		
	(C)	$B\log_{10}\left(1+\frac{S}{N}\right)$		(D)	B log	$g_{e}\left(1+\frac{S}{N}\right)$		
2.		graph K _{3, 4} has : 3 edges	(B)	4 edges	(C)	7 edges	(D)	12 edges
3.	The (A)	total number of s 125	panni (B)	ng trees that car 64	be dra (C)	awn using five 36	e labelled (D)	vertices is :
4.	Extro	emely low power MOS ICs	dissij (B)		ost per	· ·	chieved i (D)	n : ECL ICs
5.	An e	example of a univ EX-OR gate	ersal l (B)	O	: (C)	OR gate	(D)	NOR gate
6.	An 6 (A) (C)	example of a layer physical layer network layer	r that	is absent in broa (B) (D)	pres	networks is : entation layer lication layer		
7.	(A)	ATM cell is : 48 bytes long 64 bytes long		(B) (D)		ytes long ytes long		
8.	5 res	f jobs J_1 , J_2 , J_3 and spectively. In ordorder: $J_1 \ J_2 \ J_3 \ J_4$	er to	minimise averag	ge resp	onse time, the	jobs shou	ıld be run in
9.		pose it takes 100 r average access tim 100 percent		1 0		g hit rate is:	ssociative (D)	•

10.		smission of N sig l-width of :	gnals,	each band li	imited	l to f _n	_n Hz by TDM, re	quires	a minimum
	(A)	f_{m}	(B)	2 f _m		(C)	N f _m	(D)	2N f _m
11.		code is 't' error de t – 1	etectin (B)	g, the minin t	num l		ning distance show $t+1$		equal to: 2t+1
12.	A relis: (A) (B) (C) (D)	reflexive symmetric transitive not reflexive, no						., 5) }.	This relation
13.	The	dual of the switch	ning f	unction $x+y$	/z is:				
	(A)	x+yz	(B)	$\overline{x} + \overline{y} \overline{z}$		(C)	x(y+z)	(D)	$\overline{x}(\overline{y}+\overline{z})$
14.	The	characteristic equ	ation	of D flip-flo	p is:				
	(A)	Q = 1	(B)	Q = 0		(C)	$Q = \overline{D}$	(D)	Q = D
15.		ur 4 input multip 16 input MUX 4 input MUX	lexers	drive a 4 in	put m (B) (D)	8 inp	lexer, we get a : out MUX out MUX		
16.		throughput of slo S=G		ALOHA is gi S=Ge ^G			$S = Ge^{-G}$	(D)	$S = e^{G}$
17.	•	gestion control is Network layer Presentation lay		by:	(B) (D)		sical layer lication layer		
18.			ted pare to a retail to a reta	airs have ad true and (R) true but (R) alse	lequat is the	e per		v cost	
19.	An e (A) (C)	example of a non- Shortest path ro Baran's hot pota	uting	, and the second	algori (B) (D)	Cent	s : ralised routing n's backward lea	rning	algorithm

20. IP address in B class is given by : (A) 125 . 123 . 123 . 2 (B) 191 · 023 · 21 · 54 (C) 192 . 128 . 32 . 56 (D) 10 . 14 . 12 . 34 N processes are waiting for I/O. A process spends a fraction p of its time in I/O wait state. The CPU utilisation is given by: (A) $1 - p^{-N}$ (B) $1-p^N$ (C) p^N (D) p^{-N} If holes are half as large as processes, the fraction of memory wasted in holes is: (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{5}$ (A) 23. An example of a non - pre-emptive scheduling algorithm is: (A) Round Robin (B) Priority Scheduling Shortest job first (D) 2 level scheduling (C) An example of a distributed OS is: (A) Amoeba (B) UNIX (C) MS-DOS (D) MULTICS 25. Which one of the following describes correctly a static variable? (A) It cannot be initialised (B) It is initialised once at the commencement of execution and cannot be changed at run time (C) It retains its value during the life of the program (D) None of the above The output of the program code main () { int x = 0; while (x < 10) for (;;) if (+ + x % 10 = = 0)break; print f("x = %d", x);

is:

(A) x = 1

(C) x = 20

(B) compilation error

(D) none of the above

27.	A co	py constructor is invoke	ed when:								
	(A)	a function returns by v	alue	(B)	an ar	gument is passe	d by v	alue			
	(C)	a function returns by re	eference	(D)	none	of the above					
28.	When a language has the capability to produce new data types, it is said to be:										
20.	(A)	extensible		(B)		psulated	5 Said	to be.			
	(C)	overloaded		(D)	-	of the above					
29.		many constructors can	a class have	e ?							
	(A)	zero		(B)	1	_					
	(C)	2	((D)	any 1	number					
30.	An e	ntity has :									
	(i)	a set of properties									
	(ii)	a set of properties and	values for a	ll the	prop	erties					
	(iii)	a set of properties and identify an entity	the values	for s	ome s	set of properties	may n	on-uniquely			
	(iv)	a set of properties and t an entity	he values fo	r son	ne set	of properties ma	y uniq	uely identify			
	Whic	h of the above are valid	?								
	(A)	(i) only (B)	(ii) only		(C)	(iii) only	(D)	(iv) only			
31.	Λαστ	regation is :									
01.	(A)	an abstraction through	which relat	tionsh	nips a	re treated as low	zer leve	el entities.			
	(B)	an abstraction through			-						
	(C)	an abstraction through			-	_					
	(D)	none of the above									
32.	Cupp	ose R is a relation schem	and Figa	sot c	of fun	rtional dependen	orios or	D Further			
32.		ose R_1 and R_2 form a dec									
		mposition of R provided				•		,			
	(A)	$R_1 \cap R_2 \to R_1$ is in F^+									
	(B)	$R_1 \cap R_2 \rightarrow R_2$ is in F^+									
	(C)	both $R_1 \cap R_2 \to R_1$ and	$d R_1 \cap R_2 -$	$\rightarrow R_2$	functi	ional dependenc	ies are	in F ⁺			
	(D)	at least one from $R_1 \cap I$	$R_2 \rightarrow R_1$ and	d R ₁	$\bigcap R_2$	\rightarrow R ₂ is in F ⁺					
33.	In a	heap, every element is _	(of all	the el	lements in the si	ıbtree				
	(A)		minimum `	0111	(C)	sum	(D)	product			
	` /	()			()		` /	1			
34.	`	ar = = maxsize -1) rea	ar = 0; else r	ear=	rear +	-1; is required ir	ı:				
	(A)	circular queue (B)	linear queu	e	(C)	stack	(D)	deque			

35. A high performance switching and multiplexing technology that utilises fixed packets to carry different types of traffic is:							
	(A)	ATM	(B)	ADSL			
	(C)	SONET	(D)	None of the above			
36.	A co	nventional LAN bridge specifies or	nly th	e functions of OSI :			
	(A)	layers 1 and 2	(B)	layers 1 through 3			
	(C)	all layers	(D)	none of the above			
37.	An a	assembly program contains :					
	(A)	imperative and declarative staten					
	(B)	imperative statements and assem					
	(C)	imperative and declarative statem					
	(D)	declarative statements and assem	bler d	irectives			
38.		hich addressing mode, the effective		ess of the operand is generated by adding			
	(A)	absolute mode	(B)	immediate mode			
	(C)	indirect mode	(D)	index mode			
39.	Whi	ch of the following are Assembler l	Direct	ives ?			
	(i)	EQU (ii) ORIGIN		(iii) START (iv) END			
	(A)	(ii), (iii) and (iv)	(B)	(i), (iii) and (iv)			
	(C)	(iii) and (iv)	(D)	(i), (ii), (iii) and (iv)			
40.	Whi	ch of the following OS treats hardv	vare a	s a file system ?			
	(A)	UNIX	(B)	DOS			
	(C)	Windows NT	(D)	None of the above			
41.	In w	hich of the following, ready to exe	cute p	rocesses must be present in RAM?			
	(A)	multiprocessing	(B)	multiprogramming			
	(C)	multitasking	(D)	in all of the above			
42.				the existing RAM of a computer, it is still			
	•	ible to execute the program if the C	-	•			
	(A)	multitasking 	(B)	virtual memory			
	(C)	paging system	(D)	none of the above			
43.		ware Quality Assurance (SQA) enc	-				
	(A)	verification	(B)	validation			
	(C)	both verification and validation	(D)	none of the above			

D - 8708

44.	Which level is called as "defined" in capability maturity model?											
	(A)	level 0	(B)	level 3		(C)	level 4	(D)	level 1			
45.	COC	COMO model is t	used fo	or:								
	(A)	product quality	estim	ation	(B)	prod	luct complex	kity estimat	tion			
	(C)	product cost es	timatio	on	(D)	all o	f the above					
46.	Font	sizes are usually	expre	essed in po	ints. C	ne po	oint is :					
	(A)	0.0069 inch			(B)	0.013	38 inch					
	(C)	0.0207 inch			(D)	0.02	76 inch					
47.	Asse	ertion (A) : Cell	ular te	elephone sy	stems	can h	andle a mult	titude of us	sers.			
	Reas	soning (R) : Cell loca	ular te 1 area		stems p	permit	t extensive fr	equency re	use in a small			
	(A)	Both (A) and (I	R) are	true and (I	R) is th	e corr	ect explanat	ion for (A)				
	(B)	Both (A) and (R) are true but (R) is not the correct explanation										
	(C)	(A) is true but (R) is false										
	(D)	(A) is false but	(R) is t	rue								
48.	E-c	commerce involve	es:									
	(A)	Electronic Data	Inter	change	(B)	Elect	tronic mail					
	(C)	Electronic Bulle	etin Bo	ards	(D)	All c	of the above					
49.	An e	example of a data	a mini	ng algorith	m whi	ch use	es squared e	rror score f	unction is:			
	(A)	CART algorith	m		(B)	back	propagation	n algorithn	n			
	(C)	a priori algorith	nm		(D)	vecto	or space algo	orithm				
50.	(I)	Each object in t	he act	ive director	ry of w	vindov	ws 2000 has	an access o	control list.			
	(II)	The scheme is a blueprint of all objects in the domain of windows 2000. Which of the following is true ?										
	(A)	only (I)			(B)	only	(II)					
	(C)	both (I) and (II))		(D)	none	e of the abov	re				
				- (000-							

Space For Rough Work

D-8708 8