PHYSICS

- 1. Two pendulums with natural frequencies f_1 and f_2 are released in phase at the same instant of time. After what time interval will they come in phase again?
 - **A.** $\frac{1}{f_1} \frac{1}{f_2}$
 - **B.** $\frac{1}{f_1} + \frac{1}{f_2}$
 - C. $\frac{1}{f_1f_2}$
 - D. LCM of $\frac{1}{f_1}$ and $\frac{1}{f_2}$
- 2. A physics student carries out an experiment he fills a small tub with water and places a wooden vessel with a block of ice in it. He marks the level of water in the tub after he has placed the vessel, which floats on water. Let this level be given by L_1 . Now he picks up the ice and drops it into the water. He the marks the level of water as L_2 . He then waits for the ice to melt, the water to come to room temperature and again marks the level as L_3 . Which of the following is correct:
 - **A.** $L_1 > L_2 > L_3$
 - **B.** $L_1 < L_2 < L_3$
 - $C_1 L_1 = L_2 = L_3$
 - $\mathbf{D}.L_1 > L_2 = L_3$
- 3. On a full moon day, the moon rises exactly when the sun sets, say 6 p.m. in the month of June. At what time will the moon rise on the very next day?
 - A. 12/14 hours after 6 p.m.
 - B. 14/12 hours after 6 p.m.
 - C. 14/12 hours before 6 p.m.
 - D. At 6 p.m.
- 4. In Young's double slit experiment, the distance between the two slits is 0.1 mm, the distance between the slits and the screen is 1 m and the wavelength of the light used is 600 nm. The intensity at a point on the screen is 75 % of the maximum intensity. What is the smallest distance of this point from the central fringe?
 - A. 1 mm
 - B. 2 mm
 - C. 0.5 mm
 - D. 1.5 mm

- 5. Two identical bodies are made from a material whose specific heat C(T) increases monotonically with temperature. The bodies are initially kept at 300 K and 400 K respectively. They are then brought in contact with each other. Assuming no heat loss to the surroundings, the final common temperature attained by the bodies is:
 - A. 350 K
 - B. more than 350 K
 - C. less than 350 K
 - D. Cannot be decided from the information provided
- 6. A primary rainbow is formed when sunlight gets internally reflected once from the inner surface of a water drop, whereas a secondary rainbow is formed when light gets internally reflected twice from the inner surface of a water drop. Which of the following statements is correct.
 - A. The observer sees a primary rainbow with red colour at the top and violet at the bottom
 - B. The observer sees a secondary rainbow with red colour on top and violet at the bottom
 - C. For both primary and secondary rainbows the red colour is on top and violet is at the bottom
 - D. For both primary and secondary rainbows violet colour is on top and red at the bottom
- 7. The dimension of the permeability μ_0 (in the S. I. system) is (C is the dimension of charge) :
 - A. MLC^{-2}
 - B. $ML^{-1}C^{-2}$
 - $C. ML^{-1}T^{-1}C^{-1}$
 - $D. ML^{-1}T^{-1}C^{-2}$
- 8. Astronomers have concluded that the universe is expanding. They came to this conclusion by observing that :
 - A. Light arriving from different parts of the universe are uniformly red shifted.
 - B. Light arriving at the telescope from galaxies closer to the earth get more blue shifted than from the more distant ones.
 - C. Light arriving at the telescope from points nearer to the earth are more red shifted than from the more distant ones.
 - D. Light arriving at the telescope from points farther away from the earth are more red-shifted than from the nearer ones.

- 9. At time t=0, a container has N_0 radioactive nuclei of element X which undergo fission. The number of X nuclei undergoing decay per second is proportional to the number of X nuclei present in the container with a proportionality constant of λ . In addition c X nuclei are being added to the container per second. How many X nuclei are there after time t=T seconds.
 - A. $\frac{c}{\lambda} \exp(-\lambda T) N_0 \exp(-\lambda T)$
 - **B.** $\frac{c}{\lambda} \exp(-\lambda T) + N_0 \exp(\lambda T)$
 - C. $\frac{c}{\lambda}(1 \exp(-\lambda T)) + N_0 \exp(-\lambda T)$
 - **D.** $\frac{c}{\lambda}(1 + \exp(-\lambda T)) + N_0 \exp(-\lambda T)$
- 10. One mole of a van der Waal's gas obeying the equation of state $(P + \frac{a}{V^2})(V-b) = RT$ undergoes a cyclic quasi-static process that is represented by a rectangle on a PV diagram. The work done by the gas in this process is given by:

- $A. (P_2 P_1)(V_1 V_2)$
- **B.** $(P_2 P_1)(V_2 V_1)$
- C. $\left(P_2 P_1 + a \left[\frac{1}{V_2^2} \frac{1}{V_1^2}\right]\right) (V_2 V_1)$
- **D.** $\left(P_2 P_1 a \left[\frac{1}{V_2^2} \frac{1}{V_1^2}\right]\right) (V_2 V_1)$