Q. No. 1 - 20 Carry One Mark Each

1.	Which one of the following in NOT necessarily a property of a Group?					
	(A) Commutativity		(B) Associativity			
	(C) Existence of inve	rse for every element	(D) Existence of ide	entity		
2.		c number of an n-vert ength cycle? Assume i	•	l graph whi ch does		
	(A) 2	(B) 3	(C) n-1	(D)		
3.	Which one of the followith more than 2 ver	llowing is TRUE for ar tices?	ny simple connecte	undirected graph		
	(A) No two vertices h	have the same degree.				
	(B) At least two verti	ices have the same de	gree.			
	(C) At least three ve	rtices have the same o	degree			
	(D) All vertices have	the same degree.				
4.	Consider the binary relation $R = \{(x,y), (x,z), (z,y)\}$ on the set $\{x,y,z\}$. Which one of the following is TRUE?					
	(A) R is symmetric b	ut NOT antisy <mark>mm etric</mark>				
	(B) R is NOT symmetric but antisymmetric					
	(C) R is both symme	tric and antisymmetric	:			
	(D) R is neither symr	metric nor antisymmet	ric			
5.	(1217) ₈ is equivalent	to				
	(A) (1217) ₁₆	(B) (028F) ₁₆	(C) (2297) ₁₀	(D) (OB17) ₁₆		
6.	The state of the s	um number of gates e have to use only 2-ir		ment the Boolean		
	(A) 2	(B) 3	(C) 4	(D) 5		
7.	How many 32K × 1 R bytes?	AM chips are needed t	o provide a memory	/ capacity of 256K-		
M	(A) 8	(B) 32	(C) 64	(D) 128		
a a	A CDII generally hand	dles an interrupt by ex	ealting an interrunt	service routine		
0.	(A) As soon as an int	, ,	coating an interrupt	2014106 10011116		
	(U) Wa annii aa aii iii	remaki is raiseu				

instruction.

(D) By checking the interrupt register at fixed time intervals.

(C) By checking the interrupt register after finishing the execution of the current

(B) By checking the interrupt register at the end of fetch cycle.

In which one of the following page re occur?			acement policies, I	Belady's anomaly may
	(A) FIFO	(B) Optimal	(C) LRU	(D) MRU
10.	The essential content (A) Virtual page num (B) Page frame numb (C) Both virtual page (D) Access right info	ber per number and page fr		re
11.	What is the number the worst case?	of swaps required to	sort n elements	using selection sort, in
	(A) θ(n)	(B) θ (n log n)	(C) θ(n ²)	(D) ø(n² log n)
12.	S → aSa bSb a b;The alphabet {a,b} is the (A) All palindromes. (B) All odd length pa (C) Strings that begin (D) All even length p	e set of lindromes. n and end with the s	W.	grammar over the
13.	shortest path algorith P. Always finds a n		le, if one exists.	
14.	following is TRUE? (A) There is no polyn	omial time algorithmed deterministically i	ı for π _A . n polynomial time,	nen which one of the
N	(D) π_A may be unde	cidable.		
15.	Which one of the foll regular expression: ((A) The set of all stri (B) The set of all stri	0+1)*0(0+1)*0(0+ ngs containing the si	1)*? ubstring 00.	,1} is described by the

(C) The set of all strings containing at least two 0's.

(D) The set of all strings that begin and end with either 0 or 1.

- 16. Which one of the following is FALSE?
 - (A) There is unique minimal DFA for every regular language
 - (B) Every NFA can be converted to an equivalent PDA.
 - (C) Complement of every context-free language is recursive.
 - (D) Every nondeterministic PDA can be converted to an equivalent deterministic PDA.

Match all items in Group 1 with correct options from those given in Group 2.

	Group 1		Group 2
Р.	Regular expression	1.	Syntax analysis
Q.	Pushdown automata	2.	Code generation
R.	Dataflow analysis	3.	Lexical analysis
s.	Register allocation	4.	Code optimization 🔷

(A) P-4. Q-1, R-2, S-3

(B) P-3, Q-1, R-4, S-2

(C) P-3, Q-4, R-1, S-2

(D) 7-2, Q1, R-4, S-3

18. Consider the program below:

The value printed is

(A) 6

(B) 8

(C) 14

(D) 15

The coupling between different modules of a software is categorized as follows:

I. Content coupling

II. Common coupling

III. Control coupling

IV Stamp coupling

V. Data coupling

Coupling between modules can be ranked in the order of strongest (least desirable) to weakest (most desirable) as follows:

(A) I-II-III-IV-V

(B) V-IV-III-II-I

(C) I-III-V -II-IV

(D) IV-II-V -III-I

20. Consider the HTML table definition given below:

The number of rows in each column and the number of columns in each row are:

(A) (2,2,3) and (2,3,2)

(B) (2,2,3) and (2,2,3

(C) (2,3,2) and (2,3,2)

(D) (2,3,2) and (2,2,3)

Q. No. 21 - 56 Carry Two Marks Each

21. An unbalanced dice (with 6 faces, numbered from 1 to 6) is thrown. The probability that the face value is odd is 90% of the probability that the face value is even. The probability of getting any even numbered face is the same.

If the probability that the face is even given that it is greater than 3 is 0.75, which one of the following options is dosest to the probability that the face value exceeds 3?

- (A) 0.453
- (B) 0.468
- (C) 0.485
- (D) 0.492

22. For the composition table of a cyclic group shown below

*	a a	b	С	d
а	а	ь	С	d
ь	Ь	a	d	С
С	G	d	ь	а
d	d	С	a	ь

Which one of the following choices is correct?

(A) a, b are generators

(B) b, c are generators

(C) c, d are generators

- (D) d, a are generators
- 23 Which one of the following is the most appropriate logical formula to represent the statement? "Gold and silver ornaments are precious".

The following notations are used:

G(x): x is a gold ornament

S(x): x is a silver ornament

P(x): x is precious

(A) $\forall x (P(x) \rightarrow (G(x) \land S(x)))$

(B) $\forall x ((G(x) \land S(x)) \rightarrow P(x))$

(C) $\exists x ((G(x) \land S(x)) \rightarrow P(x))$

(D) $\forall x ((G(x) \lor S(x)) \rightarrow P(x))$

24. The binary operation o is defined as follows

Р	Q	P□Q
Т	Т	Т
Т	F	Т
F	Т	F
F	F	Т

Which one of the following is equivalent to P v Q?

- (A) ¬Q → P
- (B) P → Q
- (C) ¬P□Q
- (D) ¬P♣Q

25.
$$\int_{0}^{\pi/4} (1 - \tan x) / (1 + \tan x) dx \text{ evaluates to}$$

(A) 0

(B) 1

- (C) ln 2
- (D) $\frac{1}{2} \ln 2$

26. Consider the following well-formed formulae:

- I. $\neg \forall x (P(x))$
- II. $\neg \exists x (P(x))$
- III. ₩×(→P(×))
- IV. ¬∃x (¬P (x))

Which of the above are equivalent?

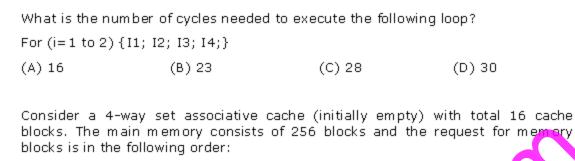
- (A) I and III
- (B) I and IV
- (C) II and III
- (D) II and IV

27. Given the following state table of an FSM with two states A and B, one input and one output:

·					
Present State A	Present State B	Input	Next State A	Next State B	Output
0	0	Ū	0	0	1
0	7	0	1	0	0
1	0	0	0	1	0
1	1	0	1	0	0
0 🔥	0	1	0	1	0
0	1	1	0	0	1
	0	1	0	1	1
1	1	1	0	0	1

If the initial state is A = 0, B = 0, what is the minimum length of an input string which will take the machine to the state A = 0, B = 1 with Output= 1?

(A) 3


(B) 4

(C) 5

(D) 6

Consider a 4 stage pipeline processor. The number of cycles needed by the four instructions I1, I2, I3, I4 in stages S1, S2, S3, S4 is shown below:

	S1	S2	S3	S4
I1	2	1	1	1
12	1	3	2	2
13	2	1	1	3
I4	1	2	2	2

0, 255, 1, 4, 3, 8, 133, 159, 216, 129, 63, 8, 48, 32, 73, 92, 155.

Which one of the following memory block will NOT be in cache if LRV replacement policy is used?

(A) 3

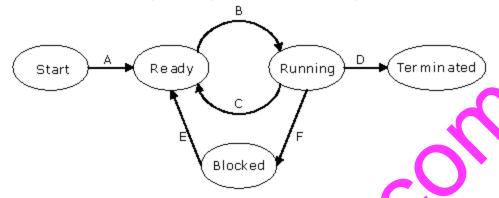
29.

(B) 8

- (C) 129
- (D) 216
- 30. Consider a system with 4 types of resources R1 (3 units), R2 (2 units), R3 (3 units), R4 (2 units). A non-preemptive resource allocation policy is used. At any given instance, a request is not entertained if it cannot be completely satisfied. Three processes P1, P2, P3 request the sources as follows if executed independently.

macpenaemay.			
Process P1:	Process P2:		Process P3:
t=0: requests 2 units of R2	t=0: requests 2 units	of R3	t=0: requests 1 unit of R4
t=1: requests 1 unit of R3	t=2: requests 1 unit o	R4	t=2: requests 2 units of R1
t=3: requests 2 units of R1	t=4: requests 1 unit of	f R1	t=5: releases 2 units of R1
t=5: releases 1 unit of R2	t=6: releases 1 unit of	R3	t=7: requests 1 unit of R2
and 1 unit of R1.	t=8: Finishes		t=8: requests 1 unit of R3
t=7: releases 1 unit of R3	'()		t=9: Finishes
t=8: requests 2 units of R4			
t=10: Finishes			

Which one of the following statements is TRUE if all three processes run concurrently starting at time t=0?


- (A) All processes will finish without any deadlock
- (B) Only P1 and P2 will be in deadlock.
- (C) Only P1 and P3 will be in a deadlock.
- (D) All three processes will be in deadlock.
- Consider a disk system with 100 cylinders. The requests to access the cylinders occur in following sequence:

4, 34, 10, 7, 19, 73, 2, 15, 6, 20

Assuming that the head is currently at cylinder 50, what is the time taken to satisfy all requests if it takes 1ms to move from one cylinder to adjacent one and shortest seek time first policy is used?

- (A) 95ms
- (B) 119ms
- (C) 233ms
- (D) 276ms

32. In the following process state transition diagram for a uniprocessor system, assume that there are always some processes in the ready state:

Now consider the following statements:

- I. If a process makes a transition D, it would result in another process making transition A immediately.
- II. A process P₂ in blocked state can make transition E while another process P₁ is in running state.
- III. The OS uses preemptive scheduling.
- The OS uses non-preemptive scheduling.

Which of the above statements are TRUE?

- (A) I and II
- (B) I and III
- (C) II and III
- (D) II and IV

The enter_CS() and leave_CS() functions to implement critical section of a process are realized using test-and-set instruction as follows:

In the above solution, X is a memory location associated with the CS and is initialized to 0. Now consider the following statements:

- I. The above solution to CS problem is deadlock-free
- The solution is starvation free.
- III. The processes enter CS in FIFO order.
- IV More than one process can enter CS at the same time.

Which of the above statements is TRUE?

- (A) I only
- (B) I and II
- (C) II and III
- (D) IV only

34.	A multilevel page table is preferred in comparison to a single level page table fo
	translating virtual address to physical address because

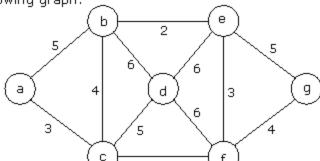
- (A) It reduces the memory access time to read or write a memory location.
- (B) It helps to reduce the size of page table needed to implement the virtual address space of a process.
- (C) It is required by the translation lookaside buffer.
- (D) It helps to reduce the number of page faults in page replacement algorithms.
- 35. The running time of an algorithm is represented by the following recurrence relation:

$$T(n) = \begin{cases} n & n \leq 3 \\ T(\frac{n}{3}) + cn & \text{otherwise} \end{cases}$$

Which one of the following represents the time complexity of the algorithm?

- (A) θ(n)
- (B) **0**(n log n)

(B)


- (C) $\theta(n^2)$
- (D) θ(n² log n)
- 36. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the resultant hash table?
 - (A) 0 1 2 2 3 23 4 5 15 6 7 8 18 9
- 0 1 2 12 3 13 4 2 5 3 6 23 7 5 8 18 9 15
- (D) 0 1 2 12,2 3 13,3,23 4 5 5,15 6 7 8 18 9
- 37. What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.
 - (A)

(B) 3

(C) 4

(D) 5

8. Consider the following graph:

Which one of the following is NOT the sequence of edges added to the minimum spanning tree using Kruskal's algorithm?

- (A) (b,e) (e,f) (a,c) (b,c) (f,g) (c,d)
- (B) (b,e) (e,f) (a,c) (f,g) (b,c) (c,d)
- (C) (b,e) (a,c) (e,f) (b,c) (f,g) (c,d) (D) (b,e) (e,f) (b,c) (a,c) (f,g) (c,d)

In quick sort, for sorting n elements, the $(n/4)^{th}$ smallest element is selected as 39. pivot using an O(n) time algorithm. What is the worst case time complexity of the quick sort?

(A) θ(n)

- (B) **θ**(n log n)
- (C) θ(n²)
- (D) $\theta(n^2 \log n)$

Let $L = L_1 \cap L_2$, where L_1 and L_2 are languages as defined below 40.

$$L_1 = \left\{ a^m \ b^m \ c \ a^n \ b^m \mid m,n \geq 0 \right\}$$

$$\mathsf{L}_2 = \left\{\mathsf{a}^\mathsf{i}\mathsf{b}^\mathsf{j}\mathsf{c}^\mathsf{k} \mid \mathsf{i},\mathsf{j},\mathsf{k} \geq 0\right\}$$

Then Lis

- (A) Not recursive
- (B) Regular
- (C) Context free but not regular
- (D) Recursively enumerable but not context free.

41. 0 0 1

The above DFA accepts the set of all strings over {0,1} that

(A) begin either with 0 or 1

(B) end with 0

(C) end with 00

(D) contain the substring 00.

Which of the following statements are TRUE?

- There exist parsing algorithms for some programming languages whose complexities are less than $\theta(n^3)$.
- II A programming language which allows recursion can be implemented with static storage allocation.
- III No L-attributed definition can be evaluated in the framework of bottom-up parsing.
- IV Code improving transformations can be performed at both source language and intermediate code level.
- (A) I and II

- (B) I and IV
- (C) III and IV
- (D) I, III and IV

43.	as given below:	ctions I ₁ and I ₂ , and	four schedules S ₁ , s	52, 53, 54 Of I ₁ and I ₂
		y] [,]]W ₁ [x]W ₁ [y]W ₂ [y]		
	Which of the above s	chedules are conflict	-serializable?	
	(A) S_1 and S_2	(B) S ₂ and S ₃	(C) S₃ only	(D) S ₄ only
44.	The following key vinternal nodes is 3, a The order of international node, and the order be stored in it. The B	and that of the leaf n al nodes is the max of leaf nodes is the n	iodes is 2, in the se imum number of ti naximum number o	quence given below. ree pointers in each
	10, 3, 6, 8, 4, 2, 1			
	The maximum numb insertions is	er of times leaf node	s would get split up	as a result of these
	(A) 2	(B) 3	(C) 4	(D) 5
45.	Let R and S be relating the following queries $I. \pi_{R-S}\left(r\right) - \pi_{R-S}\left(\pi_{R-S}\left(r\right)\right) = \left(\frac{1}{2}\right) \left(\frac{1}{2$	on the database $_{R-S}(r) \times S = \pi_{R-S,S}(r)$		S={c}. Now consider
	<pre>III. {t t ∈ π_{R-S} (r) ∧ \ IV Select R.a, R.b</pre>	,c	·	
•	(A) I and II	(B) I and III	(C) II and IV	(D) III and IV
46	In the RSA public ker (d,n) respectively, very public and period $q + (n) = (p-1)(q-1)$.	where n=p*q and p	and q are large p be an integer suc	rimes. Besides, n is
	I $M' = M^e \mod n$ $M = (M')^d \mod n$	ı	II. ed≡1mod n	
	III. ed $\equiv 1 \mod \phi(n)$		IV. $M' = M^e \mod M = (M')^d \mod M$	φ(n) od φ(n)

	Which of the above equations correctly represent RSA cryptosystem?
	(A) I and II (B) I and III (C) II and IV (D) III and IV
47.	While opening a TCP connection, the initial sequence number is to be derived using a time-of-day (ToD) clock that keeps running even when the host is down. The low order 32 bits of the counter of the ToD clock is to be used for the initial sequence numbers. The clock counter increments once per millisecond. The maximum packet lifetime is given to be 64s. Which one of the choices given below is closest to the minimum permissible rate
	at which sequence numbers used for packets of a connection can increase? (A) 0.015/s (B) 0.064/s (C) 0.135/s (D) 0.327/s
48.	Let $G(x)$ be the generator polynomial used for CRC checking. What is the condition that should be satisfied by $G(x)$ to detect odd number of bits in error? (A) $G(x)$ contains more than two terms
	(B) $G(x)$ does not divide $1+x^k$, for any k not exceeding the frame length (C) $1+x$ is a factor of $G(x)$ (D) $G(x)$ has an odd number of terms.
49.	Which of the following statements are TRUE? I The context diagram should depict the system as a single bubble. II External entities should be identified clearly at all levels of DFDs. III Control information should not be represented in a DFD. IV A data store can be connected either to another data store or to an external entity.
	(A) II and III (B) II and III (C) I and III (D) I, II and III
50.	Consider the following statements about the cyclomatic complexity of the control flow graph of a program module. Which of these are TRUE? I. The cyclomatic complexity of a module is equal to the maximum number of linearly independent circuits in the graph. II. The cyclomatic complexity of a module is the number of decisions in the module plus one, where a decision is effectively any conditional statement in the module.
	III. The cyclomatic complexity can also be used as a number of linearly independent paths that should be tested during path coverage testing. (A) I and II (B) II and III (C) I and III (D) I, II and III
	Common Data Questions: 51 & 52
	A hard disk has 63 sectors per track, 10 platters each with 2 recording surfaces and 1000 cylinders. The address of a sector is given as a triple $\langle c,h,s \rangle$, where c is the cylinder number, h is the surface number and s is the sector number. Thus, the 0^{th} sector is addressed as $\langle 0,0,0 \rangle$, the 1^{th} sector as $\langle 0,0,1 \rangle$, and so on
51.	The address < 400, 16, 29 > corre4sponds tp sector number:
52.	(A) 505035 (B) 505036 (C) 505037 (D) 505038 The address of the 1039 th sector is

Common Data Questions: 53 & 54

A sub-sequence of a given sequence is just the given sequence with some elements (possibly none or all) left out. We are given two sequences X[m] and Y[n] of lengths m and n, respectively, with indexes of X and Y starting from ...

53. We wish to find the length of the longest common sub-sequence (LCS) of X[m] and Y[n] as I(m,n), where an incomplete recursive definition for the function I() j) to compute the length of the LCS of X[m] and Y[n] is given below:

Which one of the following options is correct?

(A) $expr1 \equiv l(i-1,j)+1$

- (B) expri = | (i, j 1)
- (C) $\exp r2 = \max (l(i-1,j), l(i,j-1))$
- (D) expr2 = max(l(i-1,j-1), l(i,j))
- 54. The values of l(i,j) could be obtained by dynamic programming based on the correct recursive definition of l(i,j) of the form given above, using an array L[M,N], where M = m+1 and N=n+1, such that L[i,j] = l(i,j).

Which one of the following statements would be TRUE regarding the dynamic programming solution for the recursive definition of I(i,j)?

- (A) All elements L should be initialized to 0 for the values of I(i,j) to be properly computed.
- (B) The values of l(i,j) may be computed in a row major order or column major order of L(M,N).
- (C) The values of (i,j) cannot be computed in either row major order or column major order of L(M,N).
- (D) L[p,q] needs to be computed before L[r,s] if either p < r or q < s.

Common Data Questions: 55 & 56

Consider the following relational schema:

Suppliers(sid:integer, sname:string, city:string, street:string)
Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)

Consider the following relational query on the above database:

```
SELECT S.sname
FROM Suppliers S
WHERE S.sid NOT IN (SELECT C.sid
FROM Catalog C
WHERE C.pid NOT (SELECT P.pid
FROM Parts P
WHERE P.color<> 'blue'))
```

Assume that relations corresponding to the above schema are not empty. Which one of the following is the correct interpretation of the above query?

- (A) Find the names of all suppliers who have supplied a non-blue part.
- (B) Find the names of all suppliers who have not supplied a non-blue part.
- (C) Find the names of all suppliers who have supplied only blue parts.
- (D) Find the names of all suppliers who have not supplied only blue parts.
- Assume that, in the suppliers relation above, each supplier and each street within 56. a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schemak
 - (A) The schema is in BCNF.
 - (B) The schema is in 3NF but not in BCNF
 - (C) The schema is in 2NF but not in 3NF
 - (D) The schema is not in 2NF

Linked Answer Questions: Q.57 to Q.60 Carry Two Marks Each

Statement for Linked Answer Questions 57 & 58

Frames of 1000 bits are sent over a 10 bps durlex link between two hosts. The propagation time is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the link).

- What is the minimum number of hits () that will be required to represent the 57. sequence numbers distinctly? Assume that no time gap needs to be given between transmission of two frames.
 - (A) l = 2

(B) = 3

- (C) l=4
- (D) l = 5
- Suppose that the sliding window protocol is used with the sender window size of 58. 21, where I is the number of bits identified in the earlier part and acknowledgements are always piggy backed. After sending 2¹ frames, what is the minimum time the sender will have to wait before starting transmission of the next frame? (Identify the closest choice ignoring the frame processing time.)
 - (A) 16ms
- (B) 18ms
- (C) 20ms
- (D) 22ms

Statement for Linked Answer Questions: 59 & 60

🗘nsider a binary max-heap implemented using an array.

- Which one of the following array represents a binary max-heap?
 - (A) {25,12,16,13,10,8,14}
- (B) {25,14,13,16,10,8,12}
- (C) {25,14,16,13,10,8,12} (D) {25,14,12,13,10,8,16}
- What is the content of the array after two delete operations on the correct 60. answer to the previous question?
 - (A) {14,13,12,10,8}

(B) {14,12,13,8,10}

(C) {14,13,8,12,10}

(D) {14,13,12,8,10}