Set Code :	T2
Booklet Code :	

PHYSICS

31.		e. The dimensio			ation.	A/B = m where n	n is lin	ear mass density and A is			
	(1)	same as that of	laten	heat	(2)	same as that o	f press	sure			
	(3) same as that of work					same as that of	11.00				
52.	The dimensional formula of capacitance in terms of M, L, T and I is										
	(1)	$[ML^2T^2J^2]$	(2)	[ML-2T4]	(3)	$[M^{-1}L^3T^3I]$	(4)	$[\mathbf{M}^{-1}\mathbf{L}^{-2}\mathbf{T}^{4}\mathbf{I}^{2}]$			
53.	If <i>l</i> ,	m and n are the o	lirecti	on cosines of a v	ector,	then					
	(1)	l+m+n=1	(2)	$l^2 + m^2 + n^2 = 1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1			
54.	The	angle between i+	j and	j+k is							
	(1)	00	(2)	90°	(3)	45°	(4)	60°			
55.	A pa	A particle is moving eastwards with a velocity of 5 ms ⁻¹ . In 10 seconds the velocity changes to 5 ms ⁻¹ northwards. The average acceleration in this time is									
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	is nort	h-west	(2)	zero					
	(3) $\frac{1}{2}$ ms ⁻² towards north					$\frac{1}{\sqrt{2}}$ ms ⁻² towar	ds nor	th-east			
56.	The	linear momentum	nofa	particle varies wi	ith tin	ne t as n = a + ht	+ct² w	hich of the following is			

- 56. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?
 - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

Set Code :	T2
Booklet Code :	A

58.		velocity of a fre									
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹			
59.		rge number of b ground on which				s with the same	e speed u	. The maximum are	a on		
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$			
60.	The minimum stopping distance for a car of mass m , moving with a speed ν along a level road, if the coefficient of friction between the tyres and the road is μ , will be										
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{\nu}{2\mu g}$			
61.		that it acts						nd on the two whee			
	(1) In the backward direction on the front wheel and in the forward direction on the rear wheel										
	(2) In the forward direction on the front wheel and in the backward direction on the rear wheel										
	(3)	In the backward direction on both the front and the rear wheels									
	(4)	In the forward	direct	ion on both th	ne front ar	nd the rear who	eels	3			
62.	In a	perfectly inelas	tic col	lision, the tw	o bodies						
		strike and exp				explode with	out strik	ing			
	(3)	implode and e	xplode		(4)	combine and	move to	gether			
63.		er the action of	a cons	tant force, a p	particle is	experiencing	a consta	nt acceleration, the	n the		
	•	zero			(2)	positive					
		negative			(4)	increasing u	niformly	with time			

			Booklet Co
64.	Con	sider the following two statements:	
	A:	Linear momentum of a system of particles is zero.	
	B:	Kinetic energy of a system of particles is zero.	

Then

(1) 4s

(1)	A implies B & B implies A	(2)	A does not imply B & B does not imply A
(3)	A implies B but B does not imply A	(4)	A does not imply B but B implies A

65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)

(3) 8s (4) 10s

66.	If a spring has ti	me period T, and is cu	it into n equal parts, th	en the time period will
	(1) $T\sqrt{n}$	(2) $\frac{T}{\sqrt{a}}$	(3) nT	(4) T

67. When temperature increases, the frequency of a tuning fork (1) increases

(2) 5s

- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(2) 2πα

69. A cinema hall has volume of 7500 m3. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(3) 8.250 w-m² (4) 0.825 w-m² (1) 850 w-m² (2) 82.50 w-m²

Set Code :	T2
Booklet Code :	A

70.	To	absorb the so	ound in a h	all which	ng are used				
	(1)	Glasses, s	tores		(2)	Carpets, curtains			
	(3)	Polished s	surfaces		(4)	Platforms			
71.	IfN	represents	avagadro's	number, t	hen the numb	er of molec	cules in 6 gr	m of hydrog	gen at NTP is
	(1)	2N	(2)	3N	(3)	N	(4)	N/6	
72.	The	mean trans	lational kir	netic energ	gy of a perfec	t gas molec	ule at the to	emperature	TK is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73	The	amount of h	eat given t	o a body s	vhich raises i	te termorat	bu 190		
				o a body v		•	•		
		water equi				thermal heat capacity			
	(3)	specific ho	at		(4)	temperatu	re gradient		
74.	During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio Cp/Cv for gas is								
	(1)	$\frac{3}{2}$	(2)	$\frac{4}{3}$	(3)	2	(4)	5 3	
75.	Clad	lding in the	optical fibe	er is mainl	y used to				
	(1)	to protect t	the fiber fr	om mecha	nical stresse	s			
	(2)	to protect t	the fiber fr	om corros	ion				

(3) to protect the fiber from mechanical strength

(4) to protect the fiber from electromagnetic guidance

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of	Phospho	orous atom (At.)	No. 15) is			
		3s ² 3p ³		$3s^1 3p^3 3d^1$		$3s^23p^23d^1$		3s1 3p2 3d2			
77.	An	element 'A' of A	t.No.12	2 combines wi	th an ele	ment 'B' of At.N	o.17.	The compound formed is			
		covalent AB	(2)			$\operatorname{covalent} \operatorname{AB}_2$	(4)				
78.	The	number of neut	rons p	resent in the at	om of	Ba ¹³⁷ is					
	(1)	56	(2)	137	(3)	193	(4)	81			
79.	Hydrogen bonding in water molecule is responsible for										
	(1)	decrease in its	freezi	ng point	(2)	increase in its	degree	e of ionization			
	(3)	increase in its	boiling	gpoint	(4)	decrease in its	boilin	g point			
80.	In th	ne HCl molecule	, the bo	onding betwee	n hydro	gen and chlorine	is				
		purely covalen		-		polar covalent		complex coordinate			
81.	Potassium metal and potassium ions										
	(1)	both react with	water		(2)	have the same	numbe	er of protons			
	(3)	both react with	chlori	ne gas	(4)	have the same electronic configuration					
82.	stand	dard flask. 10 ml	of this solutio	solution were p on. The concen	pipetted of stration of	out into another f of the sodium chl	lask ar oride s				
	(1)	0.1 W	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M			
83.		centration of a 1	.0 M s	olution of pho	sphoric	acid in water is					
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N			
84.	Whi	ch of the followi	ng is a	Lewis acid?							
	(1)	Ammonia			(2)	Berylium chlor	ide				
	(3)	Boron trifluori		(4)	Magnesium oxi						
					14-A						

Set Code:	T2
Booklet Code :	A

85.	Whi	ch of the follow	ving co	nstitutes the con	pone	nts of a buffer	solution	1?	
	(1)	Potassium ch	loride a	nd potassium hy	droxid	le			
	(2)	Sodium aceta	te and a	cetic acid					
	(3)	Magnesium s	ulphate	and sulphuric ac	id				
	(4)	Calcium chlo	ride and	l calcium acetate	;				
86.	Whi	ch of the follow	wing is	an electrolyte?					
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
87.				of of the cell, Co	I/Cd+2	//Cu+2/Cu give	n that E	E0 Cd/Cd*2 =	0.44V and
		$Cu/Cu^{+2} = (-) 0.$ (-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
				J dostal		in - Distinum	alactrod	ec Afterele	etrolyeis
88.		olution of nicke	denosi	de was electroly ted on the anode	(2)	Cl gas will b	e libera	ted at the cat	hode
	(1)	II con will be	liborat	ed at the anode	(4)	nickel will be	denosi	ted on the ca	thode
	(3)	H ₂ gas will be	nocrat	ed at the anode	(4)	meker will be	cacposi	ica on the ca	
89.	Whi	ich of the follow	ving me	etals will underg					
	(1)	Cu	(2)	Li	(3)	Zinc	- (4)	Iron	
90.	Whi	ich of the follo	wing ca	nnot be used for	the st	erilization of d	rinking	water?	
	(1)	Ozone			(2)	Calcium Oxy	chloride	e	
	(3)	Potassium Cl	nloride		(4)	Chlorine wat	er		
91.	Aw	ater sample she	owed it	to contain 1.20 n	ng/litr	e of magnesiur	n sulpha	ate. Then, its	hardness in
	term	ns of calcium c	arbonat	e equivalent is					
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
92.	Sod	a used in the L	-S proc	ess for softening	of wa	ter is, Chemic	ally.		
		sodium bicar			(2)	sodium carbo	onate de	cahydrate	
		sodium carbo			(4)	sodium hydr	oxide (4	0%)	
93.	The	process of cen	nentatio	n with zinc pow	der is l	known as			
		sherardizing		zincing	(3)	metal claddir	ng (4)	electroplat	ing
					15-A				

Set Code :	T2
Booklet Code :	A

94.	Car	rosion of a me	tal is fas	test in					
	(1)	rain-water	(2)	acidulated water	er (3)	distilled water	(4)	de-ionise	d water
95.	Wh	ich of the follo	wing is	a thermoset poly	mer?				
	(1)	Polystyrene			(2)	PVC			
	(3)	Polythene			(4)	Urea-formaldel	hyde r	resin	
96.	Che	mically, neopro	ene is						
	(1)	polyvinyl ben	zene		(2)	polyacetylene			
	(3)	polychloropr	ene		(4)	poly-1,3-butadi	ene		
97.	Vul	canization invo	lves heat	ing of raw rubbe	r with	h		4	
	(1)	selenium eler			(2)	elemental sulph	ur		
	(3)	a mixture of S	Se and el	emental sulphur	(4)	a mixture of sele	enium	and sulphu	ır dioxide
98.	Petr	ol largely conta	ains.						
	(1)	a mixture of u	nsaturat	ed hydrocarbon	s C,-	C _R			
	(2)	a mixture of b	enzene,	toluene and xyle	ene .				
	(3)	a mixture of s	aturated	hydrocarbons C	2,2 - C	14			
	(4)			hydrocarbons C					
99.	Whi	ch of the follow	ving gas	es is largely resp	oonsil	ble for acid-rain?			
	(1)	SO, & NO,			(2)		our		
	(3)	CO ₂ & N ₂	70		(4)	N ₂ & CO ₂			
100.	BOL	stands for							
	(1)	Biogenetic Ox	ygen De	mand	(2)	Biometric Oxyge	en De	mand	
	(3)	Biological Ox				Biospecific Ovv			

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

101.	Stre	ss strain curve is always a straight lin	e for	
	(1)	Elastic materials	(2)	materials obeying Hook's law
	(3)	Elasto-plastic materials	(4)	plastic materials
102.	The	maximum value of Poisson's for an	elastic n	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia and is called	ıl takes p	place more quickly as compared to the increase
	(1)	Elastic point	(2)	Plastic point
	(3)	Breaking point	(4)	Yielding point
104.	For	ductile materials, the most appropria	te failu	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		*
105.	The	materials which have the same elasti	ic prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	weig	elastic bar of length 'l', cross section ght W is having vertically, it is subject agation of the bar is given by	nal area	A, Young's modulus of elasticity E and self and applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	. (2)	WI/2AE+PI/AE
	(3)	WI/2AE + PI/2AE	(4)	WI/AE+PL/2AE
			17-A	(CVL)

Set Code :	T2
Booklet Code :	A

107.	The bending moment diagram is a cubic parabola for a cantilever									
	(1)) subjected to triangular load varying from zero at free end to maximum at fixed end								
	(2)	with free end subjected to a moment								
	(3)	subjected to uniformly distributed load								
	(4)	subjected to concentrated load at the free end								
108.	For	a simply suppor	ted bea	am with central	load, th	ne Bending M	oment w	ill be		
	(1)	Least at the ce	ntre	0.	(2)	least at the supports				
	(3)	maximum at th	ne supp	oorts	(4)	maximum at the centre				
109.	The	B.M on a section	n is ma	aximum when s	hearing	gforce		*		
	(1)	is maximum	(2)	is minimum	(3)	is equal	(4)	changes si	gn	
110.	The deflection due to couple M at the free end of a cantilever of length L is									
	(1)	ML/EI	(2)	2ML/EI	(3)	ML ² /2EI	(4)	M ² L/2EI		
111.	The	The shear force on a simply supported beam is proportional to								
	(1)	displacement of the neutral axis				sum of the forces				
	(3)	algebraic sum of transverse forces				algebraic sum of axial forces				
112.	The shape of the bending moment diagram over the length of a beam, having no external load is always									
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular		
113.	The	The ratio of maximum to average shear stress in a solid circular section is								
	(1)	1.0	(2)	1.33	(3)	1.5	(4)	1.7		
114.	The	Poison's ratio f	or corl	cis						
	(1)	zero	(2)	0.1	(3)	0.2	(4)	0.3		
					18-A				(CVI	