Test Paper Code: BT

Time: 3 Hours

Maximum Marks: 300

INSTRUCTIONS

A. General:

- 1. This Question Booklet is your Question Paper.
- 2. This Question Booklet contains 28 pages and has 100 questions.
- 3. Answer ALL questions.
- The Question Booklet Code is printed on the right-hand top corner of this page. 4.
- The Question Booklet contains blank spaces for your rough work. No additional 5. sheets will be provided for rough work.
- 6. Clip board, log tables, slide rule, calculator, cellular phone, pager and electronic gadgets in any form are NOT allowed.
- Write your Name and Roll Number in the space provided at the bottom. 7.
- All answers are to be marked only on the machine gradable Objective Response 8. Sheet (ORS) provided inside this booklet, as per the instructions therein.
- 9. The Question Booklet along with the Objective Response Sheet (ORS) must be handed over to the Invigilator before leaving the examination hall.

B. Filling-in the ORS:

DO NOT BREAK THE SEALS ON THIS BOOKLET. AWAIT INSTRUCTIONS FROM THE INVIGILATOR

- 10. Write your Roll Number in the boxes provided on the upper left-hand-side of the ORS and darken the appropriate bubble under each digit of your Roll Number using a **HB pencil**.
- Ensure that the code on the Question Booklet and the code on the ORS are the same. If the codes do not match, report to the Invigilator immediately.
- On the lower-left-hand-side of the ORS, write your Name, Roll Number, Name of the Test paper, Name of the Test Centre and put your signature in the appropriate box with ball-point pen. Do not write these anywhere else.

C. Marking of Answers on the ORS:

- Each question has 4 choices for its answer: (A), (B), (C) and (D). Only ONE of them is the correct answer.
- On the right-hand-side of ORS, for each question number, darken with a HB Pencil, ONLY one bubble corresponding to what you consider to be the most appropriate answer, from among the four choices.
- There will be **negative marking** for wrong answers. 15.

MARKING SCHEME:

- (a) For each question, you will be awarded 3 (three) marks, if you have darkened only one bubble corresponding to the correct answer.
- In case you have not darkened any bubble for a question, you will be awarded 0 (zero) mark for that question.
- In all other cases, you will be awarded -1 (minus one) mark for the question.

н	_	-	-0	Ŀ.	4	4	3	
ь	-	٠	÷	e,	4	Ų	4	

Name	Roll Number				

Special Instructions / Useful Data

Atomic No.: B, 5; C, 6; N, 7; O, 8; F, 9; Ni, 28; Zn, 30; Br, 35; Cd, 48; Pt, 78.

ln 2 = 0.693

1. Let
$$1 < x < \infty$$
 and $f(x) = \log\left(\frac{x+1}{x-1}\right)$. Then $f\left(\frac{x^3 + 3x}{1 + 3x^2}\right)$ equals

(A)
$$f(x+3)$$

(B)
$$f(x^2 + 3)$$

(C)
$$2f(x)$$

(D)
$$3f(x)$$

2. Let P(x) be the polynomial of least degree with rational coefficients and $1+\sqrt{5}$ is a root of P(x)=0. Then P(x) is

(A)
$$x^2 - 2x + 4$$

(B)
$$x^2 + 2x + 4$$

(C)
$$x^2 + 2x - 4$$

(D)
$$x^2 - 2x - 4$$

3. Let C be the circle passing through the origin with its centre lying on the straight lines 3x - 2y = 0 and x + y - 5 = 0. Then the equation of C is

(A)
$$x^2 + y^2 + 4x + 6y = 0$$

(B)
$$x^2 + y^2 + 4x - 6y = 0$$

(C)
$$x^2 + y^2 - 4x - 6y = 0$$

(D)
$$x^2 + y^2 - 4x + 6y = 0$$

4. The range of a random variable X is $\{0, 1, 2, 3, ...\}$ and the probabilities of X are given by $P(X=0)=\frac{1}{e}, \ P(X=k)=\frac{c^k}{k!\ e}, \ k=1,2,3,...,$ where c is a constant. Then P(0 < X < 2) is

$$(A)$$
 $1/e$

(B)
$$4/e$$

$$(C)$$
 $2/e$

(D)
$$3/e$$

5. Let x,y be real numbers, $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = x\hat{i} + y\hat{j} - \hat{k}$. If \vec{c} is perpendicular to \vec{a} and $\vec{c} \cdot \vec{b} = -4$, then which one of the following is **TRUE**?

(A)
$$x = 2, y = 1$$

(B)
$$x = -2, y = -1$$

(C)
$$x = 2, y = -1$$

(D)
$$x = -2, y = 1$$

6. The value of $\lim_{x\to 2} \frac{2^{x+1} + 2^{4-x} - 12}{2^{6-x} - 2^{3+x} + 16}$ is

(A)
$$-1/12$$

(C)
$$-1/6$$

(D)
$$1/6$$

(A)
$$\frac{200\,\pi}{\pi+4}$$

(B)
$$\frac{100 \, \pi}{\pi + 4}$$

(C)
$$\frac{200}{\pi + 4}$$

(D)
$$\frac{100}{\pi + 4}$$

8. The solution of the differential equation $x \frac{dy}{dx} - y = 2x \ln x, x > 0$ subject to the condition y(1) = 0 is

(A)
$$x^2 \ln x$$

(B)
$$x (\ln x)^2$$

(C)
$$x^2 (\ln x)^2$$

(D)
$$x \ln x$$

9. A force of magnitude 50 N acts in a direction making an angle of 30° with the positive x – axis. Then the components (in N) along the coordinate axes OX and OY are

(B)
$$25\sqrt{3}$$
, 25

(D)
$$25\sqrt{3}/2$$
, $25/2$

10. Let z = x + iy and |z - i| = |z + 1|. Then x and y satisfy the equation

$$(A) x - y = 1$$

$$(B) \quad x + y = 1$$

$$(C) x + y = 0$$

$$(D) x - y = 0$$

11. The value of $\cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right)$ is

(A)
$$1/4$$

(B)
$$1/2$$

(C)
$$3/4$$

12. If $n \ge 2$ and $(1+x)^n = a_0 + a_1x + a_2x^2 + ... + a_nx^n$, then the value of the expression $a_0 + 2a_1 + 3a_2 + 4a_3 + ... + (n+1)a_n$ equals

(A)
$$2^{n-1}(n+2)$$

(B)
$$2^n n$$

(C)
$$2^{n-1}(n+1)$$

(D)
$$2^{n-2}(n+7)$$

(A) 1

(B) 0

(C) 1/7

- (D) 2/7
- 14. The value of the determinant $\begin{vmatrix} 1+xy & 1 & 1 \\ 1 & 1+yz & 1 \\ 1 & 1 & 1+zx \end{vmatrix}$ equals
 - (A) (x + y + z)(x + y + z + xyz)
- (B) xyz(x+y+z+xyz)

(C) xyz(x+y+z)

- (D) xyz(xy+yz+zx)
- 15. The value of the derivative of $y = \tan^{-1} \left[\frac{\sqrt{1+x^2} 1}{x} \right]$, $x \neq 0$ at x = 1 is
 - $(A) \quad \frac{1}{4 2\sqrt{2}}$

 $(B) \quad \frac{1}{4+2\sqrt{2}}$

(C) 1/2

- (D) 1/4
- 16. The value of the definite integral $\int_{0}^{2\pi} x |\sin x| dx$ is
 - (A) 2π

(B) 3π

(C) 4π

- (D) π
- 17. A particle is projected at an angle of elevation 45° with a velocity of 1 unit. Then the horizontal distance covered is (g denotes the acceleration due to gravity)
 - (A) g

(B) 2/g

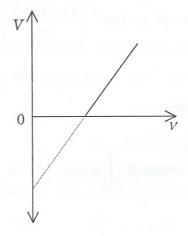
(C) g/2

- (D) 1/g
- 18. The maximum value of 7x + 10y subject to the constraints $x + 3y \ge 3$, $x + y \le 2$ and $x \ge 0$, $y \ge 0$ is
 - (A) 20

(B) 10

(C) 14

(D) 15.5

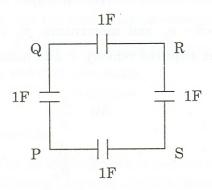

(A) $\pi/3$

(B) $\pi/4$

(C) $\pi/6$

(D) $\pi/2$

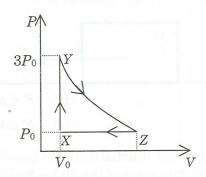
20. Figure below shows the variation of stopping potential (V) as a function of frequency (v) of the incident radiation in a photoelectric experiment. If the intensity of the incident radiation is increased, then in the graph



- (A) the slope alone changes
- (B) the *V*-intercept alone changes
- (C) both the slope and V-intercept remain the same
- (D) both the slope and V-intercept change

21. A hydrogen atom in the 3rd excited state can have

- (A) 3 Lyman, 2 Balmer and 1 Paschen transitions
- (B) 2 Balmer and 1 Paschen transitions
- (C) 2 Lyman and 1 Paschen transitions
- (D) 2 Lyman, 3 Balmer and 1 Paschen transitions


22. Four capacitors (each of 1 F) are connected as shown in the figure. If the capacitor assembly is charged to V volts by connecting to the points P and R, the total energy stored in the assembly is

- (A) 2 V^2
- (C) 4 V^2

- (B) $\frac{1}{2} V^2$
- (D) V^2

23. Figure shows the P-V diagram for an ideal gas. If the system has a temperature T_0 at X, the temperature at Y is

- (A) T_0
- (C) $3T_0$

- (B) $2T_0$
- (D) $4T_0$
- 24. The first overtone of an open organ pipe of length *l* was found to be the same as that of the fundamental frequency of a closed organ pipe when the pipe was immersed in water upto a certain level. Then, the water fills the tube upto a level of
 - (A) $\frac{1}{4}l$

(B) $\frac{3}{4}l$

(C) $\frac{1}{2}l$

(D) $\frac{2}{3}l$

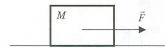
- 25. For obtaining a **REAL** image using a biconvex lens of focal length f, the distance d between the object and the image must satisfy the condition
 - (A) $d = \infty$ only

(B) 2f < d < 4f

(C) 0 < d < 2f

- (D) $d \ge 4f$
- 26. An electron having initial velocity ν_0 and momentum p_0 is accelerated in a constant electric field \vec{E} . After a time t, it acquires velocity ν and momentum p. The change in the wavelength of the electron is
 - (A) $\frac{h \left| v v_0 \right|}{p_0}$

(B) $\frac{h}{p}$


(C) $\frac{h \left| v - v_0 \right|}{p_0 v}$

- (D) $\frac{h}{p_0}$
- 27. If the biasing is changed from forward to reverse across a semiconductor p-n junction, the width of the depletion layer
 - (A) decreases

(B) does not change

(C) vanishes

- (D) increases
- 28. A force \vec{F} is applied to a block of mass M resting on a surface, as shown in the figure. The coefficient of static friction between M and the surface is μ_s . If the mass **DOES NOT** move, then

 $({\rm A}) \quad F>\mu_s Mg$

(B) $F < \mu_s Mg$

(C) F = Mg

- (D) F < Mg
- 29. When an ideal gas is compressed adiabatically to one-fourth of its original volume, the pressure increases by 8 times. The ratio of the molar heat capacities (C_p/C_v) of the gas can be
 - (A) 1.4

(B) 1.67

(C) 1.45

- (D) 1.5
- 30. Consider two simple harmonic motions represented by $x_1 = A_0 \cos(\omega t + \delta)$ and $x_2 = A_0 \cos(\omega t)$. At t = 0, $x_1 = -A_0$. If these two simple harmonic motions are combined, the amplitude of the resultant motion is
 - (A) zero

(B) $2A_0$

(C) $\frac{A_0}{2}$

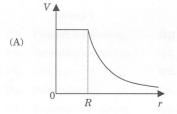
(D) $\sqrt{2}A_0$

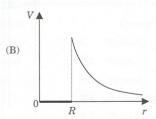
- (A) increases, but the resonance becomes broader
- (B) decreases, but the resonance becomes sharper
- (C) remains the same, but the resonance becomes sharper
- (D) remains the same, but the resonance becomes broader

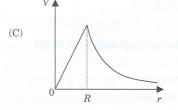
32. When the temperature of water is increased from 0°C, its

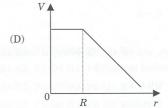
- (A) volume decreases and then increases
- (B) volume increases and then decreases
- (C) volume increases
- (D) volume remains constant

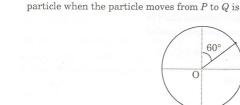
33. A projectile is launched at an angle θ with respect to the horizontal with an initial velocity u. The coordinates of the moving projectile at the highest point are

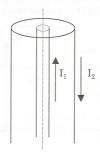

(A)
$$\left(\frac{u^2 \sin 2\theta}{g}, \frac{u^2 \sin^2 \theta}{2g}\right)$$


(B)
$$\left(\frac{u^2 \sin 2\theta}{2g}, \frac{u^2 \sin^2 \theta}{g}\right)$$


(C)
$$\left(\frac{u^2 \sin 2\theta}{2g}, \frac{u^2 \sin^2 \theta}{2g}\right)$$


(D)
$$\left(\frac{u^2 \sin 2\theta}{g}, \frac{u^2 \sin^2 \theta}{g}\right)$$


34. If a conducting sphere of radius R is given a charge Q, which one of the following graphs represents the variation of potential (V) as a function of distance (r) from the centre of the sphere


(A) mgR

(B) $\frac{3}{2}mgR$

(C) $\left(1 + \frac{\sqrt{3}}{2}\right) mgR$

(D) Zero

36. Currents I_1 and I_2 flow in opposite directions along two long coaxial tubes as shown in the figure. The magnetic field at any point in the annular region depends on

(A) I_2 only

(B) I_1 only

(C) $I_1 - I_2$

 ${\rm (D)} \quad I_1 + I_2$

37. Which one of the following is considered to be the first biological catalyst when life originated on earth?

(A) RNA

(B) DNA

(C) Protein

(D) Lipid

- 38. "Portuguese man-of-war" belongs to the phylum
 - (A) Porifera

(B) Cnidaria

(C) Annelida

- (D) Arthropoda
- 39. If an animal has biradial symmetry, then it has
 - (A) only one plane of symmetry
 - (B) two axes of rotational symmetry
 - $(C) \quad \text{two planes of symmetry; these two planes have no specific relationship to each other } \\$
 - (D) two planes of symmetry; these two planes are at right angles to each other
- 40. A population is isolated by a geographical barrier. The resulting speciation known as
 - (A) parapatric

(B) allopatric

(C) sympatric

(D) pseudopatric

41. Consider the following Groups:

 $\begin{tabular}{l} \textbf{Group II}: & \textbf{Typical examples for Group I} \\ \end{tabular}$

 $\textbf{Group III}: \ \ \text{Organism} \ / \ \text{cell associated with the production of these compounds}$

	Group I		Group II		Group II	Ι
P1.	Primary metabolite	Q1.	Antibiotic	R1.	Bacteria	
P2.	Secondary metabolite	Q2.	Amino acid	R2.	Yeast	
P3.	Enzyme	Q3.	Cellulose	R3.	Fungus	
P4.	Polysaccharide	Q4.	Lignin	R4.	B Lymphocy	tes
P5.	Recombinant protein	Q5.	Lipase	R5.	Plant Cells	
P6.	Immunoglobulins	Q6.	Human insulin			
		Q7.	IgG			
~7	A see of the volleyer rule					

Choose the correct match.

- $(A) \quad P1-Q2-R2, \, P2-Q1-R1, \, P3-Q5-R3, \, P4-Q4-R5, \, P5-Q3-R3, \, P6-Q7-R4$
- $(B) \quad P1\text{-}Q1\text{-}R1, \, P2\text{-}Q2\text{-}R2, \, P3\text{-}Q3\text{-}R3, \, P4\text{-}Q4\text{-}R5, \, P5\text{-}Q5\text{-}R1, \, P6\text{-}Q6\text{-}R4$
- $(C) \quad P1-Q2-R1, P2-Q1-R3, P3-Q6-R4, P4-Q3-R5, P5-Q7-R5, P6-Q1-R4$
- (D) P1-Q2-R1, P2-Q1-R3, P3-Q5-R2, P4-Q3-R5, P5-Q6-R1, P6-Q7-R4

- 42. Which one of the following modifications targets the proteins selectively to lysosomes?
 - (A) Addition of N-acetylgalactosamine to a serine residue of the protein
 - (B) Addition of a precise number of mannose residues to the protein
 - (C) Phosphorylation of a specific mannose residue to mannose-6-phosphate
 - (D) Addition of a peptide signal sequence to the N-terminus of the protein
- 43. Consider the following three groups:

Group I: Viruses

Group II: Associated diseases

Group III: Nature of genetic material - single stranded (ss) or double stranded (ds)

DNA/RNA

	Group I		Group II		Group III	
P1.	HIV	Q1.	Common cold	R1.	ssRNA	
P2.	Herpes virus	Q2.	Cancer	R2.	ssDNA	
P3.	Rhinovirus	Q3.	Diarrhea	R3.	dsRNA	
P4.	Rotavirus	Q4.	AIDS	R4.	dsDNA	
P5.	Human papilloma virus	Q5.	Chickenpox			
C1						

Choose the correct match.

- $(A) \quad \textbf{P1-Q2-R1}; \ \ \textbf{P2-Q3-R2}; \ \ \textbf{P3-Q1-R3}; \ \ \textbf{P4-Q5-R4}; \ \ \textbf{P5-Q4-R4}$
- (B) P1-Q4-R1; P2-Q5-R4; P3-Q1-R1; P4-Q3-R3; P5-Q2-R4
- (C) P1-Q4-R1; P2-Q5-R2; P3-Q1-R3; P4-Q3-R4; P5-Q2-R2
- (D) P1-Q2-R3; P2-Q3-R1; P3-Q4-R2; P4-Q1-R1; P5-Q5-R4
- 44. A class of spermicides (used for contraception) inhibits the flagellar motion of the sperm thereby preventing it from swimming towards the egg. This is achieved by
 - (A) inhibiting the motor protein dynein (B) inhib
 - 3) inhibiting the motor protein kinesin
 - (C) disrupting the microfilaments
- (D) depolymerizing microtubules

- 45. Which one of the following signaling pathways is **CORRECT**?
 - (A) Signal \to GPCR \to G-Protein \to Adenyl cyclase \to cAMP \to Protein kinase A \to Cellular response
 - (B) Signal \to G-Protein \to GPCR \to Phospholipase C \to Inositol triphosphate (IP3) \to IP3-gated calcium channel \to Release of Ca²⁺ ions
 - (C) Hormone diffusion \rightarrow Hormone-receptor (HR) complex \rightarrow Nuclear transport of HR complex \rightarrow G-protein modification of HR complex (Transcription Factor) \rightarrow Binding of Transcription Factor to DNA \rightarrow Transcription of a gene
 - (D) Signal \rightarrow GPCR \rightarrow G-Protein \rightarrow Tyrosine kinase \rightarrow Protein phosphorylation \rightarrow cAMP \rightarrow Cellular response
- 46. Which one of the following can be used to transfect DNA into mammalian cells?
 - P. Liposomes
 - Q. Cholesterol
 - R. CaCl₂ + HEPES buffer (calcium phosphate)
 - S. Magnesium chloride
 - (A) Only P

(B) P and Q

(C) P and R

(C)

(D) P and S

(D) P-4, Q-1, R-2, S-5

47. Choose the correct set of matches between Groups I and II.

	Group I		Group II
P.	One extra copy of chromosome 13	1.	Edwards syndrome
Q.	XO	2.	Klinefelter syndrome
R.	XXY	3.	Patau syndrome
S.	One extra copy of chromosome 21	4.	Down syndrome
		5.	Turner syndrome
(A)	P-1, Q-5, R-3, S-2	(B	P-3, Q-5, R-2, S-4

- 48. Which one of the following events **DOES NOT** take place in the lumen of the endoplasmic reticulum in a eukaryotic cell?
 - (A) Translation of a mRNA to the corresponding polypeptide chain
 - (B) Folding of the polypeptide chain
 - (C) Post-translational modifications of the polypeptide chain
 - (D) Phospholipid synthesis

P-2, Q-1, R-3, S-4

- Rowland and Molina were awarded the Nobel Prize in Chemistry for the year 1995 for their model which states that
 - (A) chlorine monoxide, monoatomic chlorine and monoatomic oxygen produced from chlorofluorocarbons react with atmospheric ozone to cause destruction of ozone layer
 - (B) ocean's capacity to absorb additional carbon dioxide is limited, resulting in global warming
 - (C) acid rains are the major problems to countries which burn more coal and gasoline in the process of industrialization
 - (D) UV light damages DNA
- 50. In some goats, the presence of horns is produced by an autosomal allele that is dominant in males and recessive in females. A horned female is crossed with a hornless male. One of the resulting F1 females is crossed with a hornless male. Then,
 - (A) all male progeny and none of the female progeny will be horned
 - (B) all female progeny and none of the male progeny will be horned
 - (C) 50% of the male progeny and none of the female progeny will be horned
 - (D) 50% of the female progeny and none of the male progeny will be horned
- 51. An enzymatic reaction following Michaelis-Menten kinetics ($K_m = 50~\mu M$) converts 10% of the substrate (initial concentration $S_0 = 1~mM$) to the product in 5 minutes. The maximum reaction velocity (in $\mu M/m$ inute) of the enzyme is approximately
 - (A) 10

(B) 20

(C) 50

- (D) 180
- 52. Four mutant strains of *E. coli* having the following characteristics were isolated:
 - Mutant strain 1: lac-repressor is not able to bind to operator because of a mutation in the operator region of the *lac* operon
 - Mutant strain 2: Allolactose is not able to bind to repressor because of a mutation in the repressor-encoding gene
 - Mutant strain 3: Catabolite activator protein (CAP) is not able to bind to the promoter because of a mutation in the promoter region
 - Mutant strain 4: cAMP is not able to bind to CAP because of a mutation in the CAP-
 - encoding gene

lac Genes are expressed in strain(s)

- (A) 1 only
- (B) 1, 3, and 4 only
- (C) 1 and 4 only
- (D) 1 and 2 only, but in the presence of IPTG

- 53. 8 M urea solution became cold when it was prepared by dissolving an appropriate amount of urea in water at room temperature. This is because the dissolution of urea is
 - (A) exothermic and exergonic

(B) exothermic and endergonic

(C) endothermic and exergonic

- (D) endothermic and endergonic
- 54. In the pentose phosphate pathway, glucose is first converted to ribulose-5-phosphate by oxidative decarboxylation. Then, ribulose-5-phosphate undergoes
 - (A) further oxidation
 - (B) reduction
 - (C) further decarboxylation
 - (D) only rearrangements of carbon skeleton
- 55. Which one of the following statements is TRUE?
 - (A) All microarrays are DNA microarrays
 - (B) Complete genome sequence should be known to make a microarray
 - (C) All the microarrays use radioisotopes
 - (D) Microarrays can be used to measure mRNA levels
- 56. The metabolite that is **NOT** used by brain as a source of energy under conditions of prolonged low blood-glucose levels is

	spec	cies produced in the chloroplast?		
	(A)	Carotenoids	(B)	Chlorophyll a
	(C)	Chlorophyll b	(D)	Phycocyanin
58.	A D	NA sequencing reaction was performed w	ith th	ne fragment 5'-XXXXGCGATCGYYYY-3'
	as t	he template, dideoxy GTP, all the four di	VTPs,	, and the required primers and enzyme.
	XXX	XX and YYYY in the given DNA fragmer	nt rep	present primer binding sites. The set of
		ments obtained during the reaction will be		
		ments)		ay will be horned gaussian (8)
	(A)	5'-CGATCGC-3' only		
	(B)	5'-CG-3', 5'-CGCTAG-3', 5'-CGCTAGC-3	,	
	(C)	5'-CG-3', 5'-CGATCG-3', 5'-CGATCGC-3	,	
	(D)	5'-G-3', 5'-GCG-3', 5'-GCGATCG-3'		
59.	Acco	ording to the Linnean system of biological	classi	fication, the term "Hominidae" indicates
	(A)	class	(B)	order
	(C)	family	(D)	genus
60.	The	endosperm in an angiosperm plant is		
	(A)	haploid	(B)	diploid
	(C)	triploid	(D)	tetraploid
61.	The	technique appropriate for sterilizing anim	al tis	sue culture media is
	(A)	filtering through a 0.45 μm filter		
	(B)	autoclaving at 120 °C		
	(C)	hoiling at atmospheric proceure		

using chemical agents

(D)

57. Which one of the following protects membrane lipids against damage by reactive oxygen

62. Which two of the following statements are TRUE in relation to human pregnancy?

P: The blastocyst consists of trophoblast, an inner cell mass and a central cavity

 \mathbf{Q} : The morula becomes embedded in the endometrium during implantation

R: The placenta acts as an exchange mechanism between the mother and the fetus

S: Maternal and fetal blood are mixed while passing through the placenta

(A) \mathbf{P} and \mathbf{Q}

(B) \mathbf{R} and \mathbf{S}

(C) \mathbf{Q} and \mathbf{S}

(D) P and R

63. In *Drosophila melanogaster*, cherub wings (ch), black body (b) and cinnabar eyes (cn) are recessive to their corresponding alleles (represented as ch+, b+ and cn+, respectively) and are all located on chromosome 2. Homozygous wild type flies were mated with cherub, black and cinnabar flies and the resulting F1 females were test crossed with cherub, black and cinnabar males. The following progeny were produced from the test cross:

ch+ b+ cn+ 780 ch+ b cn 70

110

60

ch b+ cn

ch+ b+ cn 6

ch b cn 769

ch+ b cn+ 111

ch b+ cn+

ch b cn+ 9

Total 1915

Of these three genes, which one is in the middle?

- (A) The locus that determines cherub wings
- (B) The locus that determines cinnabar eyes
- $(C) \quad \text{The locus that determines black body} \\$
- (D) Cannot be determined from the given data

- 64. The enzyme that is used to make the first strand cDNA from mRNA is
 - (A) Reverse transcriptase

(B) Restriction endonuclease

(C) DNA polymerase

- (D) T4 DNA ligase
- 65. Which one of the following compounds, on transamination, **DOES NOT** result in one of the genetically-coded 20 amino acids?

- 66. Choose the correct set of words denoted by (P), (Q), (R), (S) and (T) to fill in the blanks.
 - (P) use (Q) for antigen presentation. These antigen-displaying MHC molecules are recognized by (R), which express a unique co-receptor on their cell surface called as (S). On interaction with the antigen presenting cells, T cells respond by producing cytokines such as (T).
 - (A) P. All nucleated cells; Q. MHC I; R. Cytotoxic T Cells; S. CD4; T. Perforins
 - (B) P. Macrophages; Q. MHC II; R. Cytotoxic T Cells; S. CD4; T. γ-Interferon
 - (C) P. B Lymphocytes; Q. MHC II; R. Helper T Cells (TH2); S. CD4; T. Interleukin-4
 - (D) P. Dendritic Cells; Q. MHC I; R. Helper T Cells (TH1); S. CD8; T. GMCSF
- 67. Group I lists relationships that can exist between two organisms. Their descriptions are given in Group II. Find the correct set of matches between Groups I and II.

Group I

Group II

- P. Ammensalism
- 1. One population is benefited and the other is harmed
- Q. Commensalism
- 2. Two dissimilar species living together in close association
- R. Symbiosis
- 3. Heterotrophic organisms that ingest other organisms
- S. Parasitism
- 4. One population is inhibited but the other is not affected
- 5. One population is benefited but the other is not affected
- (A) P-4, Q-1, R-2, S-3

(B) **P-3**, **Q-5**, **R-4**, **S-1**

(C) P-5, Q-4, R-3, S-5

(D) P-4, Q-5, R-2, S-1

68. Choose the correct set of matches between Groups I and II.

3.

Group I

Group II

- P. Embryoid
- An unorganized growth of plant cells in a culture medium
- Q. Callus
- A localized group of actively dividing cells from which permanent tissue systems such as root, shoot, leaf, and flower are derived
- R. Meristem
- A process whereby specialized, non-dividing cells begin to proliferate by mitotic division, presumed to involve regression to an undifferentiated state
- S. Scutellum
- Mass of cells which has an external morphology resembling a proembryo
 - The embryonic cotyledon of monocot plants
- (A) P-4, Q-2, R-3, S-5

(B) P-4, Q-1, R-2, S-5

(C) P-3, Q-4, R-2, S-1

- (D) P-2, Q-1, R-3, S-4
- 69. Match the hormones ($Group\ I$) to the glands producing them ($Group\ II$).

	Group I		Group II
P1.	Oxytocin	R1.	Ovary
P2.	Insulin	R2.	Pituitary
P3.	Calcitonin	R3.	Testis
P4.	Estrogen	R4.	Pancreas
P5.	Epinephrine	R5.	Thyroid
P6.	Testosterone	R6.	Pineal
		R7.	Adrenal

- (A) P1-R5, P2-R4, P3-R2, P4-R1, P5-R6, P6-R3
- (B) P1-R4, P2-R6, P3-R5, P4-R3, P5-R7, P6-R1
- (C) P1-R2, P2-R4, P3-R5, P4-R1, P5-R7, P6-R3
- (D) P1-R1, P2-R4, P3-R7, P4-R1, P5-R6, P6-R5
- 70. The G₀ phase of the animal cell cycle can occur
 - (A) just before the G1 phase

(B) just before the mitotic (M) phase

(C) during the G₂ phase

(D) late in the G, phase

71.	Wh	ich one of the following options correctly describes the import of P _i and ADP into the
		ochondria?
	(A)	By ADP $ H^+$ antiport and $P_i H^+$ antiport
	(B)	By ADP – ATP antiport and P _i – OH ⁻ antiport
	(C)	By ADP - OH- antiport and P _i - OH ⁻ antiport
	(D)	By ADP – ATP antiport and $P_i - H^+$ antiport
72.		ne genotypes Aa Bb Cc dd Ee and Aa bb Cc Dd Ee are crossed, what will be the portion of AA BB CC DD EE genotype among the progeny?
	(A)	1/32 (B) 1/64
	(C)	1/256 (D) Zero
73.	the cond initi	enzymatic reaction following Michaelis-Menten kinetics ($K_m = 50~\mu M$) converts 10% of substrate (initial concentration $S_0 = 1~mM$) to the product in 5 minutes. If the enzyme tentration is doubled and the substrate concentration is brought down to 0.1 mM in the all reaction mixture, the time (in minutes) taken for 50% conversion will be reximately
	(A)	1 (B) 2
	(C)	2.5 (D) 12.5
74.	Wh	ich one of the following statements regarding mitochondria is FALSE?
	(A)	Oxidation of NADH present in the mitochondrial matrix is coupled to proton transport out of the matrix
	(B)	Hydrolysis of ATP present in the mitochondrial matrix is coupled to proton transport out of the matrix
	(C)	Cytochrome c mediates electron transfer from cytochrome bc_1 complex to cytochrome aa_3 complex
	(D)	Cytosolic NADH is delivered to the mitochondrial NADH dehydrogenase complex by the glycerol-3-phosphate shuttle pathway

(B)

(D)

globular

helical

The shape of cholesterol is

planar

cylindrical

75.

(A)

(C)

76.	com	plex, is			yme of <i>E. coli</i> pyruvate dehydrogenase					
	(A)	pyridoxal		(B)	thiamine					
	(C)	niacin		(D)	riboflavin					
77.	For	0	ılar organism, which	one of the	following needs to be characterized only					
	(A)	Genome		(B)	Transcriptome					
	(C)	Proteome		(D)	Metabolome					
78.		A certain purified DNA sample was cut with two restriction endonucleases E1 and E2. The following results were obtained from agarose gel electrophoresis								
	Sam	Sample cut with E1 alone: two bands of size 35 kb and 15 kb								
		Sample cut with E2 alone: two bands of size 40 kb and 10 kb								
	Sam	ple cut simulta	neously with E1 and	E2: three b	bands of size 35 kb, 10 kb and 5 kb					
	Fron	n these data, it	can be inferred that	the DNA h	nas librarii (m. 1911)					
	(A)	two sites for E	E1 and one site for E2	2						
	(B)	one site for E1	and two sites for E2	2						
	(C)	one site each t	for E1 and E2							
	(D)	three sites for	E1 and one site for I	E2						
79.	Whi	ch one of the fol	llowing elements NE	ED NOT b	pe present in an expression vector?					
	(A)	Selection mar	ker to select for host	cells conta	ining the vector					
	(B)	Two different	origins of replication	L						
	(C)	Promoter sequ	uence upstream of the	e cloned ge	ene finds inscensel's 43					
	(D)	Unique restri	ction enzyme sites for	r insertiona	al cloning					
80.	ΔG°	for the hydrol	ysis of ATP to ADP ε	and P_i is -3	32 kJ/mol. This means that when ATP is	5				

-32 kJ/mol of free energy becomes available to the cell for utilization

at least -32 kJ/mol of free energy becomes available to the cell for utilization

free energy available to cell cannot be determined solely by the value of $\Delta G^{\circ\prime}$

free energy available to the cell cannot be more than $-32~\mathrm{kJ/mol}$

hydrolyzed to ADP and Pi in a cell,

(B)

(C)

81.	The	e product obtained by he amethylenediamine is	ating	an equ	imo	lar mixture	of adipic acid	and
	(A)	Nylon 6		(B)) N	Nylon 66		
	(C)	Polyurethane		(D)		Perylene		
82.		nixture of $\mathrm{CH_{3}CH_{2}CH=CH}_{2}$ vity because	and H	Br (slight	exce	ess) in ether D (DES NOT show o	ptical
	(A)	an achiral product is formed						
	(B)	a single chiral product is for						
	(C)	the product formed is a race		ixture				
	(D)	CH ₃ -CH ₂ -CH=CH ₂ and HB			ethe	er Aller		
0.0	mı							
83.	The	correct match between the ite	ms of			Group II is		
	alee s	Group I		Group	II			
	P.	Phosphatidic acid	1.	Zwitterio	onic			
	Q.	Triacylglycerol	2.	Hydroph	ilic			
	R.	Glycogen	3.	Hydroph	obic			
			4.	Amphiph	natio			
	(A)	P-4, Q-2, R-3		(B)	P	-4, Q-3, R-2		
	(C)	P-1, Q-4, R-2		(D)	P	2-2, Q-3, R-1		
84.	The	correct match between the ite	me of	Group I a	nd f	Group II is		
	Sto		1115 01	Group I a	iiu v	Group II is		
		Group I				Group II		
	P.	McLafferty rearrangement			1.	UV-Vis spec	troscopy	
	Q.	Chemical shift			2.	IR spectrosco	py Jomos T	
	R.	Molar extinction coefficient			3.	NMR spectro	scopy	
	S.	$R_{\rm f}$ values			4.	Mass spectro	metry	
					5.	Thin layer ch	romatography	
					6.	Gel electroph	oresis	
	(A)	P-1, Q-3, R-6, S-4		(B)	P.	-3, Q-4, R-2, S	S-6	
	(C)	P-4, Q-2, R-3, S-5		(D)	P.	-4. Q-3. R-1. S	5–5	

87.	Whi	ich one of the following complex ions has	a squ	are planar geometry?						
	(A)	$[PtCl_4]^{2-}$	(B)	$[\mathrm{NiCl}_4]^{2-}$						
	(C)	$[\mathrm{Zn(CN)}_4]^{2-}$	(D)	$[\mathrm{Cd(CN)}_4]^{2^-}$						
88.	The	set of quantum numbers, $n = 2$, $\ell = 2$, $n = 2$	$a_{\ell}=0,$							
	(A)	is forbidden								
	(B)	describes an electron in a 2d orbital								
	(C)	describes an electron in a 2p orbital								
	(D)	describes one of the five orbitals of sim	ilar tyj	oe % -6 , L -8 , 6 , M -1 , 40						
89.	The	rate equation for the reaction $2X + 3Y$	$\rightarrow Z$ i	is $rate = k[X][Y]$. Consider the following						
	state	ements								
	P:	The unit of k is mol $L^{-1} s^{-1}$								
	\mathbf{Q} : The value of k is independent of the initial concentrations of X and Y									
	R:	\mathbf{R} : By doubling the concentrations of both X and Y , the rate is doubled								
	Then	n, which one of the following is CORRE	CT?							
	(A)	${f P}$ is true, ${f Q}$ is false, ${f R}$ is false	(B)	${\bf P}$ is true, ${\bf Q}$ is true, ${\bf R}$ is false						
	(C)	P is false, Q is true, R is true	(D)	${f P}$ is false, ${f Q}$ is true, ${f R}$ is false						

(B) N₂

(D) [NO]⁺

(B) H₂O

(D) HF

85. Which one of the following is paramagnetic?

Which one of the following molecules has zero dipole moment?

(A) CO

(C) NO

(A) BF₃

(C)

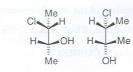
 $CHCl_3$

86.

(A) $\left(\frac{2x}{1+x}\right)p$

(B) $\left(\frac{2x}{1-x}\right)p$

(C) $\frac{2}{3}xp$


S.

- 2xp(D)
- The correct match between the items of Group I and Group II is 91.

Group I

Group II

- Fehling's solution
- 1. Detection of aldehyde
- Ferric chloride solution
- Detection of glucose
- Schiff's base formation
- Detection of phenol
- Iodoform test
- Detection of -COCH₃
- P-2, Q-1, R-3, S-4
- P-4, Q-3, R-1, S-2
- P-3, Q-2, R-4, S-4
- (D) P-2, Q-3, R-1, S-4
- 92. The two compounds given below are

identical

enantiomeric

diastereomeric

meso compounds

The correct match between the items of Group I and Group II is

Group I

Group II

- Preparation of alkanes
- Reimer-Tiemann 1.
- $C_6H_6 + C_2H_5Cl + AlCl_3$
- 2. Elimination reaction
- C₆H₅OH + CHCl₃ + NaOH
- 3. Friedel-Crafts
- C₂H₅Br + KOH (alcoholic) S.
- 4. Wurtz
- P-3, Q-2, R-1, S-4
- (B) P-4, Q-3, R-1, S-2
- P-1, Q-3, R-2, S-4

P-4, Q-2, R-1, S-3 (D)

The acidity of 94.

- C₂H₅COOH
- Q: C₂H₅NH₂
- $R: C_2H_5OH$
- C_2H_5SH S:

follows the order

P > S > R > Q

P > R > S > Q(B)

S > Q > R > P(C)

(D) $\mathbf{R} > \mathbf{Q} > \mathbf{P} > \mathbf{S}$

95. The basic oxide amongst the following is

> (A) Cl₂O

(B) Na₂O

(C) P_4O_{10}

 SO_3 (D)

The shape of $[BrF_4]^+$ ion is 96.

- regular tetrahedron (A)
- (B) square planar
- (C) trigonal pyramidal
- (D) see-saw OR irregular tetrahedron

97. Assertion [a]: Dilute liquid ammonia solution of alkali metals (M) conduct electricity.

Assertion [b]: The electrical conductivity is due to the formation of solvated electrons and $M^{\scriptscriptstyle +}$ ions.

Which one of the following is **CORRECT**?

- (A) [a] is true but [b] is false
- (B) Both [a] and [b] are false
- (C) Both [a] and [b] are true and [b] is the correct reason for [a]
- (D) Both [a] and [b] are true but [b] is not the correct reason for [a]
- 98. A zero order reaction is 50% complete in 30 minutes. The time (in minutes) from the start of the reaction required for 80% completion is
 - (A) 42

(B) 48

(C) 52

(D) 60

99. The following data are given.

 $N_2(g) + 3H_2(g)$

$$\rightarrow$$
 2NH₃ (g),

 ΔH_1 ΔH_2

 ΔH_3

 $2NH_3(g) + (5/2)O_2(g) \rightarrow 2NO(g) + 3H_2O(1),$

 $2H_{2}(g) + O_{2}(g)$

$$\rightarrow$$
 H₂O (l),

The ΔH_{net} for the reaction $N_{2}\left(g\right)+O_{2}\left(g\right)\rightarrow2NO\left(g\right)$ is

(A) $\Delta H_{\rm net} = \Delta H_1 + \Delta H_2 + \Delta H_3$

- (B) $\Delta H_{net} = \Delta H_1 + \Delta H_2 \Delta H_3$
- (C) $\Delta H_{net} = -(3/2)\Delta H_1 + \Delta H_2 \Delta H_3$
- (D) $\Delta H_{net} = \Delta H_1 + \Delta H_2 (3/2)\Delta H_3$

100. From the data given below

$$\text{A} \rightarrow \text{A}^{2+} + 2e,\, E^{\circ} = +0.80 \text{ V}$$

$$A \to A^{3+} + 3e, E^{o} = +0.99 \text{ V}$$

the calculated E° for $A^{2+} \rightarrow A^{3+} + e$ is

(A) +0.19 V

(B) +0.73 V

(C) +1.37 V

D) +1.79 V

B

Space for rough work

NRIIE ON THE PROPERTY.

DO NOT WRITE ON THIS PACEL