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UNIT-1
PARTIAL DIFFERENTIAL EQUATIONS

This unit covers topics that explain the formation of partial differential equations
and the solutions of special types of partial differential equations.

1.1 INTRODUCTION

A partial differential equation is one which involves one or more partial
derivatives. The order of the highest derivative is called the order of the equation. A
partial differential equation contains more than one independent variable. But, here we
shall consider partial differential equations involving one dependent variable ‘z’ and only
two independent variables x and y so that z = f(x,y). We shall denote

0z 0z 0’z o 0’z
------- =p, ===, memeeee- S, - =5, - - =t
OX dy Ox? X0y oy°

A partial differential equation is linear if it is of the first degree in the dependent
variable and its partial derivatives. If each term of such an equation contains either the
dependent variable or one of its derivatives, the equation is said to be homogeneous,
otherwise it is non homogeneous.

1.2 Formation of Partial Differential Equations

Partial differential equations can be obtained by the elimination of arbitrary constants or
by the elimination of arbitrary functions.

By the elimination of arbitrary constants
Let us consider the function

O(X,y,2,8b ) =0 --mmmmmmmee- (1)

where a & b are arbitrary constants
Differentiating equation (1) partially w.r.t x &y, we get

o o
+ p— =0 (2)

Ox oz

od oo
— +qg— =0 3

oy oz

Eliminating aand b from equations (1), (2) and (3), we get a partial differential
equation of the first order of the form f(x,y,z,p,q) = 0



Example 1
Eliminate the arbitrary constants a& b from z= ax+ by +ab

Consider z = ax+hby +ab 1)

Differentiating (1) partially w.rt x &y, we get

oz

= a e, p=a (2)
OX
oz

= b ie, g =b (3)
oy

Using (2) & (3) in (1), we get
Z = px+qy+pq
which is the required partial differential equation.
Example 2
Form the partial differential equation by eliminating the arbitrary constantsa and b
from
z= (X +a%) (y*+b?)
Given z= (x*+a%) (y?+b?) (1)
Differentiating (1) partially w.rt x &y , we get

p =2x (y°+b*)

q=2y(x +a)
Substituting the values of p and g in (1), we get
4xyz = pq

which is the required partial differential equation.



Example 3

Find the partial differential equation of the family of spheres of radius one whose centre
lie inthe xy - plane.

The equation of the sphere is given by

(x-a)’+ (y-b)*+ 22 =1 (1)

Differentiating (1) partially w.rt x & y, we get

0
0

2(x-a) +2zp
2(y-b) +22zq

From these equations we obtain

Xx-a= -zp_____ (2
y-b=-zqg___ (3)

Using (2) and (3) in (1), we get

20+ P+ =1
or Z(p° +q* +1) =1

Example 4

Eliminate the arbitrary constants a, b & ¢ from

XXy z°
— +— + — =1 and form the partial differential equation.

a? b

The given equation is

XXy 7

— +— +— =1 ®




Differentiating (1) partially w.rt x &y, we get

2X  2zp

_ 4— =0
@

2y 2zq

_ 4— =0
b ¢

Therefore we get

X zp

— +— =0 2)

a c?

y Zq

b? ' c? -0 ©

Again differentiating (2) partially w.r.t ‘x’, we set

(L/a®)+@/c®)(zr+p?) = 0 (4)

Multiplying (4) by x, we get

X xzr  pX
— +— +— =0

a2 &

From (2) , we have

—zZp  Xzr  pX
—+—+ — =0

¢ &

or -zp + xzr + px= 0

By the elimination of arbitrary functions

Letu and v beany two functions of x,y,z and ®(u, v)=0, where ® is an
arbitrary function. This relation can be expressed as

u=1f(v) 1)




Differentiating (1) partially w.rt x & y and eliminating the arbitrary
functions from these relations, we get a partial differential equation of the first order
of the form

f(x,y,z,p,q) =0.

Example 5
Obtain the partial differential equation by eliminating ‘f ¢ from z = (x+y) f(x*- y?)

Let us now consider the equation

z = (x+y) f-y7) 1)
Differentiating (1) partially w.rtx &y , we get

p = (x+y)f (xX2-y).2x + f(x*- y*)
q = (x+y)F (x*-y). (2y) + f(xX° -yz)

p-f(x2-y) = (x+y)f'(x2-y’). 2x (2)
q-fF(X-y) = (x+y) ' (x*- ¥°).(-2y) 3)
Hence, we get
p-f (xX-y) X
q-f (xX*-y) y

ie,  py -yf(X*- 7)) =-gxaxf (X - y7)
ie,  py +ax = (x+y) F(x*-¥7)
Therefore, we have by(1), py +gx =z
Example 6
Form the partial differential equation by eliminating the arbitrary function f
from
z=ef(x+y)
Consider z = ¢’ f(x+y ) (1)
Differentiating (1) partially w.r.t x &y, we get

e f'(x +y)
e f'(x +y)+f(x+vy). e

p

q
Hence, we have

q=p+z



Example 7
Form the PDE by eliminating f & ® from z = f(x+ay) + @ ( x —ay)

Consider z= f(xtay) + ® ( x—ay) (1)

Differentiating (1) partially w.r.t x &y , we get

p = f'(x+ay) + @' (x —ay) 2)

q= f'(x+ay).a+®'(x-ay) (-a) 3)

Differentiating (2) & (3) again partially w.rt x &y, we get

r =f"(xt+ay) +®"( x—ay)
t =f"(x+ay).a>+®"( x—ay) (-a)°

ie, t=a’{f'(x+ay) +0"( x—ay)}

or t=atr

Exercises:

1. Form the partial differential equation by eliminating the arbitrary constants ‘a’ &
‘b’ from the following equations.

Q) z=ax + by
(i) X+y*  z
+ — =1

a’ b?
(iiiy z=ax+by+a’+b’
(iv) ax+by’+cz’=1
(v) z=ax+b%+ab

2

2. Find the PDE of the family of spheres of radius 1 having their centres lie on the
xy plane{Hint: (x —a)? + (y — b)* + 2> = 1}

3. Find the PDE of all spheres whose centre lie on the (i) z axis (ii) x-axis

4. Form the partial differential equations by eliminating the arbitrary functions in the
following cases.
() z=f(xty)
(i) z=fx-Yy)
(iiiy z=fOC+y*+79)
(iv), o(xyz,x+y+2z)=0



(v) z=x+y+f(xy)
(vi) z=xy+fx+y?)

(vii) z= 1 | x)
Z
(viii) F(xy+z° x+y+2)=0

(ix) z=f(x+iy)+f(x—1iy)
(x)  Z=F(C +2y) +g( - 2y)

1.3 SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION

A solution or integral of a partial differential equation is a relation connecting the
dependent and the independent variables which satisfies the given differential equation. A
partial differential equation can result both from elimination of arbitrary constants and
from elimination of arbitrary functions as explained in section 1.2. But, there is a basic

difference in the two forms of solutions.

arbitrary constants in a complete integral is called a particular integral.

Singular Integral

Let f(x,y,z,p,q) =0 ---------- Q)

be the partial differential equation whose complete integral is

$ (X,y,2,ab) =0

where ‘a’ and ‘b’ are arbitrary constants.

Differentiating (2) partially w.r.t. a and b, we obtain

o
-------- =0 --—--=- (3)
oa
o
and e =0 e 4)
ob

The eliminant of ‘a’ and ‘b’ from the equations (2), (3) and (4), when it exists, is

called the singular integral of (1).

A solution containing as many arbitrary
constants as there are independent variables is called a complete integral. Here, the partial
differential equations contain only two independent variables so that the complete
integral will include two constants.A solution obtained by giving particular values to the



General Integral

In the complete integral (2), put b = F(a), we get

¢ (X,y,Z,a, F(a) ) =0 e (5)

Differentiating (2), partially w.r.t.a, we get

The eliminant of ‘a’ between (5) and (6), if it exists, is called the general integral of (1).
SOLUTION OF STANDARD TYPES OF FIRST ORDER PARTIAL
DIFFERENTIAL EQUATIONS.
The first order partial differential equation can be written as

f(xy.z, p,) =0,

where p = 0z/0x and q = 0z / dy. In this section, we shall solve some standard forms
of equations by special methods.

Standard | : f(p,q) = 0. i.e, equations containing p and q only.

Suppose that z = ax + by +c is a solution of the equation f(p,q) = 0, where f (a,b)
=0.

Solving this for b, we get b = F (a).
Hence the complete integralisz=ax+F(@y+c  ----m-mmmm-- Q)
Now, the singular integral is obtained by eliminating a & ¢ between
z=ax+yF()+c
0=x+yF(a)
0=1.

The last equation being absurd, the singular integral does not exist in this case.

To obtain the general integral, let us take ¢ = ® (a).



Then, z=ax+F@y+d@ - (2)
Differentiating (2) partially w.r.t. a, we get
0=x+F(@).y+d'(a - (3)

Eliminating ‘a’ between (2) and (3), we get the general integral

Example 8

Solve pg=2
The given equation is of the form f(p,q) =0
The solution is z = ax + by +c, where ab = 2.

Solving, b=----- :

Differentiating (1) partially w.r.t ‘c’, we get
0=1,
which is absurd. Hence, there is no singular integral.

To find the general integral, putc=® (a) in (1), we get

Differentiating partially w.r.t ‘a’, we get
2

0=X—------ y + ®’'(a)
a2

Eliminating ‘a’ between these equations gives the general integral.



Example 9
Solvepg+p+g=0
The given equation is of the form f (p,q) = 0.
The solution is z=ax + by +c, whereab+a+b=0.

Solving, we get

Differentiating (1) partially w.r.t. ‘c’, we get

0=1.
The above equation being absurd, there is no singular integral for the given partial
differential equation.
To find the general integral, put ¢ = @ (a) in (1), we have

a
Z = ax—|-----—---- y+o@ e (2)
1+a
Differentiating (2) partially w.r.t a, we get
1 1
0=x— ———y + @@ ®3)
(1+a)°

Eliminating ‘a’ between (2) and (3) gives the general integral.
Example 10

Solve p? + g° = npq
The solution of this equation is z = ax + by + ¢, where a? + b? = nab.

Solving, we get



2
Hence the complete integral is

Differentiating (1) partially w.r.t ¢, we get 0 = 1, which is absurd. Therefore, there is no
singular integral for the given equation.

To find the general Integral, put C = ® (a), we get

The eliminant of ‘a’ between these equations gives the general integral

Standard 11 : Equations of the form f (x,p,q) =0, f (y,p,q) =0 and f (z,p,q) = 0.
i.e, one of the variables x,y,z occurs explicitly.

Q) Let us consider the equation f (x,p,q) = 0.

Since z is a function of x and y, we have

or dz = pdx + qdy

Assume that g = a.

Then the given equation takes the form f (x, p,a) =0
Solving, we get p = ®(x,a).

Therefore, dz = d(x,a) dx + a dy.

Integrating, z = | ®(x,a) dx + ay + b which is a complete Integral.



(i) Let us consider the equation f(y,p,q) = 0.

Assume that p = a.

Then the equation becomes f (y,a, q) =0

Solving, we get q = @ (y,a).

Therefore, dz = adx + ®(y,a) dy.

Integrating, z = ax + J®(y,a) dy + b, which is a complete Integral.
(iii) Let us consider the equation f(z, p, q) = 0.

Assume that g = ap.

Then the equation becomes f (z, p, ap) =0

Solving, we get p = ®(z,a). Hence dz = ®(z,a) dx + a ®(z, a) dy.

dz
ie, ----------- = dx + ady
d (z,a)
dz
Integrating, E—— =X +ay + b, which is a complete Integral.
D (z,a)

Example 11
Solve q = xp + p?

Given D R e — (1)
This is of the form f (x,p,q) = 0.
Putg=ain (1), we get
a =xp +p°
i.e,p?+xp—a=0.

X +V(x* + 4a)
Therefore, e ———



Integrating , 2l e — dx +ay +b
2
X X
Thus, Z= — -t { ------ J(4a+ x%)+asinh™
4 4
Example 12
Solve g = yp

This is of the form f (y,p,q) =0
Then, putp=a.
Therfore, the given equation becomes q = a%y.
Since dz = pdx + qdy, we have

dz = adx + a’y dy
Integrating, we get z = ax + ------- +Db
Example 13

Solve 9 (p?z + q?) =4

This is of the form f (z,p,q) =0
Then, putting q = ap, the given equation becomes

9 (pZZ + a2p2) — 4

2
Therefore, e —
3(Vz +ad)
2a
and Vi S——
3 (Vz + @)

Since dz = pdx + qdy,



dz=+% - dx £ a- - dy
3 z+a 3 \z + @

Multiplying both sides by Vz + a%, we get

2 2
VZ +a? dz = - dx + ------ ady, which on integration gives,
3 3
(Z+a2)3/2 2 2
S X + —meme- ay +b
32 3 3
or (z+a)¥ =x+ay+h.
Standard 111 : fi(x,p) = f2 (v,q). ie, equations in which ‘z’ is absent and the variables
are
separable.

Let us assume as a trivial solution that

f(x,p) = g(y.q) = a (say).

Solving for p and g, we get p = F(x,a) and g = G(y,a).

But dz= -----—--- dx + ------- dy

Hence dz = pdx + qdy = F(x,a) dx + G(y,a) dy

Therefore, z = [F(x,a) dx + | G(y,a) dy + b , which is the complete integral of the given
equation containing two constants a and b. The singular and general integrals are found in
the usual way.

Example 14
Solve pg = xy

The given equation can be written as

p y
S = a(say)
X q



Therefore, ----- =a implies p=ax
X
y y
and - =a implies q=----
q a

Since dz = pdx + qdy, we have

dz =axdx + ------ dy, which on integration gives.
a
aXZ y2
Z= - + - +b
2 2a
Example 15

Solve p® + ¢* = X* + y?
The given equation can be written as
p*—x* =y’ -’ = & (say)
p’—x*=a? implies p=+(a*+x?
and y’—qg°=a’ implies q=+(y*—a%
But dz =pdx + qdy
ie, dz=va’+x%dx +\y?—a’ dy

Integrating, we get

Standard 1V (Clairaut’s form)

Equation of the type z = px + qy + f (p,q) ------ (1) is known as Clairaut’s form.



Differentiating (1) partially w.r.t x and y, we get
p=a and qg=h
Therefore, the complete integral is given by

z=ax+hy+f(ab).

Example 16
Solve z = px + qy +pq
The given equation is in Clairaut’s form.
Putting p=a and g = b, we have
z=ax+by+ab e 1)
which is the complete integral.
To find the singular integral, differentiating (1) partially w.r.t a and b, we get

0=x+b
O=y+a

Therefore we have, a=-y and b= -x.
Substituting the values of a & b in (1), we get
Z=-Xy — Xy + Xy
or z + xy =0, which is the singular integral.
To get the general integral, put b = ®(a) in (1).
Then z=ax+®d(@y+ad@ e (2)
Differentiating (2) partially w.r.t a, we have
O=x+d'(@y+ad'(@+d@ - (3)

Eliminating ‘a’ between (2) and (3), we get the general integral.



Example 17
Find the complete and singular solutions of z = px + qy + V 1+ p° + ¢°
The complete integral is given by

z=ax+by+V1+a?+b®> e 1)

To obtain the singular integral, differentiating (1) partially w.r.t a & b. Then,

Therefore,

and Y = mmmemmmmmmeeees e 3)
V(1 +a® +Db?)

Squaring (2) & (3) and adding, we get

a’+b?
X2 + y2 e
1+a’+b?
1
Now, (Y —
1+a’+b?
1
i.e, 1+8% + b2 = e
12—y
Therefore,
1
V(1 +a + b2) = e e ()
V12— y?

Using (4) in (2) & (3), we get



and = —bV1I-xX*-y°
Hence, : {——— and b= —-memmmmee-

Substituting the values of a & b in (1) , we get

- X2 Y 1

Z= - + ——

Ty Ay Y

which on simplification gives
z=V1-xX*—y*
or x?+y?+2z°=1, which is the singular integral.
Exercises

Solve the following Equations
pg =k
3+ qj pq

p+Vg =X
p=yq
7= p2 + q2
p+g=x+y
pZZZ + q2 — 1
Z=px+qy - 2Vpg
Az (px+ay)Y=c’+p°+ ¢
0.z=px+aqy+pq’

RO NookowhE

EQUATIONS REDUCIBLE TO THE STANDARD FORMS

Sometimes, it is possible to have non — linear partial differential equations of the
first order which do not belong to any of the four standard forms discussed earlier. By
changing the variables suitably, we will reduce them into any one of the four standard
forms.
Type (i) : Equations of the form F(x"p, y"q) =0 (or) F(z, x™p, y"q) = 0.

Case(i): If m=landn=1, then put x!™ = X and y*" = V.



Therefore, X"p = ------ (1-m) = (1—m) P, where P = -----—--

Similarly, y"q = (1-n)Q, where Q = ------

oY
Hence, the given equation takes the form F(P,Q) =0 (or) F(z,P,Q) = 0.
Case(ii) : Ifm=1and n=1,then put logx=Xand logy=Y.

0z 0z oX 0z 1

Now, p = ----- = -==---- , mmmmmmm D mmmmmen mmme
OX oX oX oX X
0z
Therefore, xp = ------ =P.
oX
Similarly, yq =Q.
Example 18

Solve x*p? + y?zq = 27
The given equation can be expressed as
(x*p)* + (y’q)z = 22°
Herem=2,n=2
PutX=x"=xtand Y =y"=y ™

We have x"p = (1-m) P and y"q=(1-n)Q
ie, x’p=-Pand y’q=-Q.

Hence the given equation becomes
P2_Qz=272 = - (1)
This equation is of the form f (z,P,Q) = 0.

Let us take Q = aP.



Then equation (1) reduces to

P2 aPz =27°
at (@ +8)
Hence, e z
2
at (@ +8)
and Q=a| - z
2
Since dz =PdX + QdY, we have
a+@+8) a+@+8)
dz = |------m--m zdX +a |- zdy
2 2
dz a+V@ +8
e, - e e (dX +ady)
z 2

a+tVa’+8
L (X +aY) +b
2
at\@2+8) (1 a
Therefore, logz=|--------------- ---- + ----1+ +Db which is the complete solution.
2 X y
Example 19

Solve x%p? +y’q® = 22

The given equation can be written as
(xp)* + (ya)* =2°
Herem=1n=1.

Put X=1logx and Y =logy.



Then xp=P and yq=0Q.
Hence the given equation becomes

P2+ Q? =7% —ooee- (1)
This equation is of the form F(z,P,Q) = 0.
Therefore, let us assume that Q = aP.

Now, equation (1) becomes,

z
Hence = mmemmee

J(1+2%)

az

and Q=-—-—--

V(1+a%)
Since dz = PdX + QdY, we have

z az
dz = ---------- dX + ----m-m--- dy.
V(1+2%) V(1+a%)

dz
ie, V(1+a?) ---- = dX +ady.

z

Integrating, we get

V(1+a® logz = X +aY +b.
Therefore, V(1+a%) log z = logx + alogy + b, which is the complete solution.
Type (i) : Equations of the form F(z¥p, zXq) = 0 (or) F(x, zp) = G(y,z").

Case (i) : If k=-1, putZ=2z"",

oZ oZ 0z 0z
VoV — = (k+1)Z*. ------- = (k+1) Z%p.
OX 0z OX OX
1 oz

Therefore, Zp = -----  -------
k+1 ox



NOW, ======= = ~mmmmmmm e = p
OX 0z  Ox z
o0z 1
Similarly, S — q
oy y4
Example 20

Solve z'g* - z%p =1
The given equation can also be written as
(Z°0)° - (2%p) =1

Here k = 2. Putting Z =z """ =2 we get

1 oz 1 oz
Ay o = —— and Zq= - -
k+1 ox k+l oy
1 oZ 1 oz
4 R —— EU A R —
3 oX 3 oy

ie, Q°-3P-9=0,
which is of the form F(P,Q) = 0.
Hence its solution is Z = ax + by + ¢, where b*—3a—9=0.

Solving forb, b= ++/(3a +9)



Hence the complete solution is
Z=ax +V(Ba+9).y+c

or Z’=ax +V(Ba+9)y+c

Exercises

Solve the followmg equations.

1. xp +yp -z

2. 22 (p+q°) =x*+y*
3. 7% £p§x2+q2):12
4. 2X'p°-yzq-3z°=0
5. 2+ XA = X 22
6. X’p+yq=72°

7. xj/p;ryzlq:z
8.z (p —Q) 1

9. z (p2/x +g°y) =1
10. p>x + g’y = z.

1.4 Lagrange’s Linear Equation

Equations of the form Pp+ Qq =R (1), where P, Q and R are
functions of X, y, z, are known as Lagrange’s equations and are linear in ‘p” and ‘q’.To
solve this equation, let us consider the equations u=a and v = b, where a, b are arbitrary
constants and u, v are functions of X, y, z.

Since ‘u’isa constant, we have du = 0 ----------- (2).

But ‘u’ as a function of x,y, z,

ou ou ou
du= — dx+ — dy + — dz
0x oy 0z
Comparing (2) and (3), we have
ou ou ou
— dXx+ —dy+ —dz =0 (3)
ox oy 0z
Similarly, ov ov ov
— dx+ —dy+ —dz =0 4)

ox oy 0z



By cross-multiplication, we have

dx dy dz
ou Ov Ou oOv ou Ov Ou Ov ou Ov Ou OV
0z 0Oy oy 0z ox 0z 0z Ox oy O0x Ox— 0Oy
(or)
dx dy dz
— = — = — ©)
P Q R

Equations (5) represent a pair of simultaneous equations which are of the first
order and of first degree. Therefore, the two solutions of (5)areu=a and v =b. Thus,
&(u,v) = 0 isthe required solution of (1).

Note :

To solve the Lagrange’s equation,we have to form the subsidiary or auxiliary
equations
dx dy dz

P Q R

which can be solved either by the method of grouping or by the method of
multipliers.

Example 21

Find the general solution of px +qy =z.

Here, the subsidiary equations are

dx dy dz

X y z
Taking the first two ratios, dx _ dy
x oy

Integrating, log x =logy + log c;



or X =CYy
e, c1=Xxly

From the last two ratios, dy dz

y z
Integrating, logy = logz + log c;
or y = 2
e, co=Yylz
Hence the required general solution is
®( x/y, y/z) =0, where @ is arbitrary
Example 22
Solve ptanx +q tany =tanz

The subsidiary equations are

dx dy dz
tanx tany tanz
Taking the first two ratios, dx _ dy

tanx ~ tany

ie, cotx dx = coty dy
Integrating, log sinx = log siny +log c;

ie, sinx = c;siny
Therefore, c1 = sinx /siny
Similarly, from the last two ratios, we get

siny = ¢, sinz

i.e, C, = siny/ sinz

Hence the general solution is



sinx siny
() , =0, where @ is arbitrary.
siny sinz

Example 23
Solve (y-z2)p+(z-x)q =x-y
Here the subsidiary equations are
dx dy dz

Using multipliers 1,1,1,
dx + dy +dz

each ratio =
0

Therefore, dx + dy + dz =0.

Integrating, x+y +z = ¢; (1)

Again using multipliers x, y and z,

xdx + ydy + zdz

each ratio =
0

Therefore, xdx +ydy +zdz =0.
Integrating,  x%/2 + y?/2 +z°/2 = constant

or X+ ¥y + 77 = _ )
Hence from (1) and (2), the general solution is

O(x+y+z,x°+y+79)=0

Example 24

Find the general solutionof (mz - ny)p + (nx-1z)g = ly - mx.



Here the subsidiary equations are
dx dy dz
mz- ny nx - Iz ly - mx
Using the multipliers x,yand z, we get

Xdx +ydy +zdz

each fraction =
0
" o.oxdx +ydy+zdz = 0, which on integration gives
X212 + Y212 +7%/2 = constant
or X+y +7 =¢q ey

Again using the multipliers I, m and n, we have

ldx + mdy + ndz

each fraction =
0

© o ldx +mdy +ndz = 0, which on integration gives
IXx +my +nz = ¢ (2)
Hence, the required general solution is
O+ Yy + 7%, Ix+ my+nz )=0
Example 25
Solve (X*- y*-Z%)p + 2xy q = 2xz.
The subsidiary equations are

dx dy dz

X2-y?-z 2xy 2xz
Taking the last two ratios,

dx dz

2xy 2xz



2Xy 2Xz

Integrating, we get logy =logz + logc;
or 'y = ¢z
ie, ¢ =Vyl/z 1)
Using multipliers x,y and z, we get

Xdx + ydy +zdz Xdx + ydy +zdz

each fraction =
X (X2-y%-22 )+2xy*+2x22 X ( X+y? +7%)

Comparing with the last ratio, we get

Xdx + ydy +zdz dz

X ( X°+y? +72) ) 2;
_ 2xdx + 2ydy + 2zdz dz
" X2+ y? + 72 ) _z
Integrating,  log ( x*+y* +z°) = logz + logc,

or X+y +7° =z

X2+ Y2 + 77
e, C=——— (2
z

From (1) and (2), the general solutionis ®(c; cy) =0.

X2+y2 +22
e, @ |(yz),—/——— =0
z



Exercises

Solve the following equations

px* + qy* = 2°
pyz+qzx=xy
Xp—yq =y — X

y’zp + X2 = y°X

Z (x—y) = px’ —qy’
@-x)p+(b-y)g=c-z
(Y’zp) /x +xzq=Yy
(y2+222p—xyq+><2=0

L XpHYq=(x+y)z

10. p—q=log (x+y)

11. (xz + y2)p + (X2 — yz)q = X* +
12.(y-2)p-(2x+y)g=2x+z

CoNoO~wWNE

1.5 PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH
CONSTANT COEFFICIENTS.

Homogeneous Linear Equations with constant Coefficients.

A homogeneous linear partial differential equation of the n™ order is of the form

"z "z "z
Co --—--- + Cp - ... + Cp —------- =F(xy) - Q)
ox" ox"toy oy"
where cg, Cq --------- , Cy are constants and F is a function of ‘x” and ‘y’. It is

homogeneous because all its terms contain derivatives of the same order.
Equation (1) can be expressed as

(coD"+ D™ D + ... +¢, D" )z =F (xy)
or f(DD)z=F(xy) - (2),



0 0
where, ----- =Dand ----- =D"
oX oy

As in the case of ordinary linear equations with constant coefficients the complete
solution of (1) consists of two parts, namely, the complementary function and the
particular integral.

The complementary function is the complete solution of f (D,D) z = 0-------(3),
which must contain n arbitrary functions as the degree of the polynomial f(D,D). The
particular integral is the particular solution of equation (2).

Finding the complementary function

Let us now consider the equation f(D,D) z = F (x,y)
The auxiliary equation of (3) is obtained by replacing D by m and D by 1.
ie,com’+eom™+ . +c =0 e (4)

Solving equation (4) for ‘m’, we get ‘n’ roots. Depending upon the nature of the roots,
the Complementary function is written as given below:

Roots of the auxiliary Nature of the Complementary function(C.F)
equation roots
my,My,M3 ....... .My distinct roots f1 (y+mox)+f(y+mox) + ....... +h(y+mpXx).
m;=my=m, Mg,My,....,m, | two equal roots | fi(y+mx)+xfo(y+mix) + f3(y+msx) + ...+
fo(y+mpx).
mi=my =....... =mp,=m |allequal roots | fi(y+mx)+xfy(y+mx) + x*f3(y+mx)+.....
+ . Ax" f, (y+mx)

Finding the particular Integral
Consider the equation f(D,D) z = F (x,y).

Now, the P.I is given by -------- -F (x,y)

Case (i) : When F(x,y) =e™™

1
3 [ pdx+by

f (D,D)
Replacing D by ‘a’ and D by ‘b’, we have

1
Y [ p— e™™  where f (a,b) # 0.




f (a,b)
Case (ii) : When F(x,y) = sin(ax + by) (or) cos (ax +by)
1
R sin (ax+by) or cos (ax+by)

f(D?>,DD,D?)

Replacing D*=-a%, DD %= -ab and D =-b? we get

3 [ — sin (ax+by) or cos (ax+by) , where f(-a% - ab, -b?) # 0.
f(-a% - ab, -b?)

Case (iii) 1 When F(x,y) = x" y",

P.l = oo Ty = [£(D, D) XY

Expand [f (D,D)]™ in ascending powers of D or D and operate on x™ y" term by term.

Case (iv) : When F(x,y) is any function of x and y.

1
P = - - F(xy).
f(D,D)
1 1
Resolve----------- into partial fractions considering f (D,D) as a function of D alone.
f(D,D)

Then operate each partial fraction on F(x,y) in such a way that
--------- F (x.y) = [ F(x,c-mx) dx,
D-mD
where c is replaced by y+mx after integration
Example 26
Solve(D®-3D°D +4D%) z = "%

The auxillary equation is m=m®—-3m?+4 =0



The rootsarem=-1,2,2

Therefore the C.F is fi(y-x) + f; (y+ 2x) + xf3 (y+2x).

S [ — --- (Replace D by 1 and D by 2)

ex+2y
27
Hence, the solutionisz = C.F. + P.I
ex+2y
ie, z =1 (y-x) + fo(y+2x) + X f3(y+2X) + ----------
27

Example 27

Solve (D~ 4DD +4 D %) z =cos (X — 2y)
The auxiliary equation is m?—4m +4 =0
Solving, we get m=2,2.
Therefore the C.F is fi(y+2x) + xfy(y+2x).

1
S P = o5 €OS (X-2Y)
D?-4DD + 4D
Replacing D*by —1, DD by 2 and D * by —4, we have
1

S R cos (x-2y)
(-1) — 4 (2) + 4(-4)



. Solution is z = fy(y+2x) + Xfo(y+2X) — --------------- _

25
Example 28
Solve (D? - 2DD) z = X% + >
The auxiliary equation is m* — 2m = 0.
Solving, we get m=0,2.
Hence the C.F is f1 (y) + f; (y+2Xx).
X3y
Py = oo
D’-2DD
1 3
. - (Xy)
2D
D1 -------
D
1 2D 1!
= oo [ e J (<’y)
D’ D
'2
1 ( 2D 4D
= - [ — S — o (<)
D>\ D D?
1 - 2 ‘ 4 2
SRS Cy) + - D (x%) + ------ D (Cy)+ ..... J
D? D D?
1 2 4
= - L OCY) + - () e O+ ..... J
D? D D
1 2
Pl = (<°y) + ------ ()
D’ D
x5y N
P.l4 = - + ------



5X

e
Pl,  =--------- (Replace D by 5and D by 0)
D”-2DD
e5x
25
XSy X6 e5x
~.Solution is Z = fy(y) + f2 (y+2x) + ------- S pe— TR

Example 29
2
Solve (D* + DD — 6 D’ z = y cosx.

The auxiliary equation ism?+m—6 = 0.
Therefore, m=-3, 2.

Hence the C.F is f;(y-3x) + fo(y + 2x).
Yy COSX

1 1
= -- -- Y COSX

(D+3D) (D-2D)

1
= e [ (c = 2x) cosx dx, wherey =c— 2x
(D+3D)
1
SR - J(c—2x) d (sinx)
(D+3D)
1
S — [(c—2x) (sinx) —(-2) (- cosx)]
(D+3D)
1
= e [ysinx—2cosX)]
(D+3D)

= [ [(c + 3x) sinx — 2 cosx] dx , wherey =c + 3x



= [ (c + 3x) d(= cosx) — 2] cosx dx
=(c +3x) (—cosx)—(3) (-sinx) — 2 sinx
= —y COSX + sinx

Hence the complete solution is

z = f1(y — 3x) + fo(y + 2x) — y cosx + sinx

Example 30
Solver—4s + 4t =e®"
%z &’z &z
Given equation is -------- Sy R— L. R— =e®*Y
x> OXdy dy*

ie, (D°—4DD +4D? )z=e*"Y
The auxiliary equation is m? —4m + 4 = 0.
Therefore, m=2,2

Hence the C.F is fi(y + 2x) + x fo(y + 2X).

D?_ 4DD+4D °

Since D~ 4DD+4D%=0 forD =2 and D = 1, we have to apply the general rule.

1

= emmeemeeeeeee [ @297 (x where y =c— 2X.
(D-2D)



- J‘ Xec-2x+ 2X dX

, Wherey=c-2x.
= [ xe® dx
= e X%/2

X2ey+2x

Hence the complete solution is

1
z = fy(y+2x) + fo(y+2x) + ----- x7e>

1.6 Non — Homogeneous Linear Equations

Let us consider the partial differential equation

f(D.D)z=F(xy) - (1)

If f(D,D) is not homogeneous, then (1) is a non—homogeneous linear partial differential
equation. Here also, the complete solution = C.F + P.1.

The methods for finding the Particular Integrals are the same as those for
homogeneous linear equations.

But for finding the C.F, we have to factorize f (D,D) into factors of the form D — mD —c.

Consider now the equation



This equation can be expressed as

p—mg = CZ -------- d),

which is in Lagrangian form.

The subsidiary equations are
dx dy dz

The solutions of (4) arey + mx =a and z = be®™.

Taking b = f(a), we get z = e f (y+mx) as the solution of (2).

Note:
1. If (D-miD —Cy) (D-myD-Cy)...... (D -m,D-C,) z=0 is the partial
differential equation, then its complete solution is

z = e%" fi(y +mix) + e%* fo(y+mox) +. . ... + %% fr(y+mpx)

In the case of repeated factors, the equation (D-mD — C)"z = 0 has a complete

solution z = e fi(y +mx) + x e fo(y+mx) +. .. .. +x " e £, (y+mXx).

Example 31
Solve (D-D-1) (D-D —2)z=e Y

Here mi=1, my,=1,¢c1=1,c,=2.

Therefore, the C.F is e* f; (y+x) + 2 f, (y+x).
e2x-y
P.l. = e PutD=2,D =-1.
(D-D -1) (D-D -2)

C-(-D)-D@E-(-D-2



e
2
e 2x-y
Hence the solution is z = e*f; (y+x) + € f, (y+X) +  ----------
2
Example 32
Solve (D?~DD + D —1) z = cos (X + 2y)
The given equation can be rewritten as
(D-D+1) (D-1) z = cos (X + 2y)
Here m;=1,my;=0,c;=-1,¢c,= 1.
Therefore, the C.F = e fy(y+x) + " f, (y)
1 , 2
e cos (x+2y) [PutD?’= —1,DD =-2,D = —4]
(D*-DD +D -1)
1
= mmmmmmmmmmeesseeeeeeee- cos (x+2y)
~1-(-2)+D -1
1
R -- COS (X+2Y)
D
sin (X+2y)
2
sin(x+2y)

Hence the solution is z = e™ fy(y+x) €* fo(y) + ---------------- .

Example 33 , ,
Solve [(D + D-1) (D + 2D —3)] z = ¥ + 4 + 3x +6y

Here my=-1,my,=-2,¢c1=1,¢,=3.



Hence the C.F is z = e* fy(y — X) + e f,(y — 2x).

Py = mrermmmm e [PutD=1,D=2]

ex+2y
(1+2-1) (1+4-3)
ex+2y
4
1
Pl = weemmmmm oo (4 + 3x + BY)

(D+D —1) (D + 2D - 3)

1
S e - (4 + 3x + 6y)
D+2D
3[1 - (D+D)]|1 — -
3
1 | D+2D Y\
= e [1-D+D)]*|1— - (4 +3x+6Y)
3 3
1 | | D+2D 1 |
=-—[1+(D+D)+ (D+D)* +.. ] |1+ —mmmm- + - (D+2D )+ ..... ]
3 3 9
. (4 + 3x +6y)
1 4 5
R N D+ ------ D+ ..... (4 + 3x + 6y)



1 4 5
= | 443x + By + - (3) + --—(6)
3 3 3

=X+2y+6
Hence the complete solution is
z= ey (y-x) + ¥ fp (y — 2%) + == +X +2y +6.

Exercises
(a) Solve the following homogeneous Equations.

&7 &z o
L et —6 oo = Cc0s (2x +)
ox? OXoy oy?
0%z 0’z
 J— g, e e—— = sin x.cos 2y
ox? oxoy

3.(D°+3DD +2D%) z = x+Vy
4. (D~ DD+ 2D %) z = xy + €. coshy

2 2
.(D®- 7DD ?- 6D ®) z = sin (x+2y) + >

6. (D? +4DD —5D?) z = 3e”Y + sin (x — 2y)
7.(D*- DD —30D%) z =xy + e>"
8. (D?- 4D %) z = cos2x. cos3y

9.(D*-DD -2D? z=(y-1)e*



10. 4r + 12s + Ot = e~ %¥

(b) Solve the following non — homogeneous equations.

1. (2DD +D?-3D)z =3 cos(3x — 2y)

2. (D*+DD+D-1)z=¢”

3. r—s+p=xt+y

4. (D*-2DD +D?-3D +3D +2)z = (e** + 2)?

5. (D*-D?-3D+3D)z=xy+7.



UNIT-II
FOURIER SERIES

2.1 INTRODUCTION

The concept of Fourier series was first introduced by Jacques Fourier (1768-
1830), French Physicist and Mathematician. These series became a most important tool
in Mathematical physics and had deep influence on the further development of
mathematics it self.Fourier series are series of cosines and sines and arise in representing
general periodic functions that occurs in many Science and Engineering problems. Since
the periodic functions are often complicated, it is necessary to express these in terms of
the simple periodic functions of sine and cosine. They play an important role in solving
ordinary and partial differential equations.

2.2 PERIODIC FUNCTIONS

A function f (x) is called periodic if it is defined for all real ‘x” and if there is
some positive number ‘p’ such that

f(x+p)="f(x)forall x.

This number ‘p’ is called a period of f(x).

If a periodic function f (x) has a smallest period p (>0), this is often called the
fundamental period of f(x). For example, the functions cosx and sinx have fundamental
period 2.

DIRICHLET CONDITIONS

Any function f(x), defined in the interval ¢ < x < ¢ + 2x, can be developed as
do 0

a Fourier series of the form ------- + 2. (a, cosnx + by, sinnx) provided the following
n=1

conditions are satisfied.

f (X) is periodic, single— valued and finite in [c, c + 2 x].
f (x) has a finite number of discontinuities in [ ¢, ¢ + 2x].
f (x) has at the most a finite number of maxima and minima in [ ¢,c+ 2x].

These conditions are known as Dirichlet conditions. When these conditions are satisfied,
the Fourier series converges to f(x) at every point of continuity. At a point of
discontinuity x = ¢, the sum of the series is given by

f(x) = (1/2) [T (c-0) + T (c+0)] ,



where f (c-0) is the limit on the left and f (c+0) is the limit on the right.

EULER’S FORMULAE
The Fourier series for the function f(x) in the interval c < x < c + 2= is given by
do 0
f(x)= ---—---- + Zl(an cosnx + by, sinnx), where
2 =
1 cix
ag= - | f(x) dx.
C
T
1 cion
I — [ (x) cosnx dx.
C
1 cumm
by = ----- [ f (x) sinnx dx.
C
T

These values of ag, a,, by are known as Euler’s formulae. The coefficients ag, a,, b, are
also termed as Fourier coefficients.

Example 1

Expand f(x) =xas Fourier Series (Fs) inthe interval [ -m, «]

do o0
Let f) = — + ¥ [ apcosnx +Db,sin nx | ---------- 1)
2 n=1
1 =
Here a, = — [f(x)dx
T -T
1 =
= [xdx
T -T
T
= 1 i
T |2
-7
1 U
= — _ - — =0
T 2 2



l =n
an =-— [f(x) cosnx dx

T

(X) [sin nx J (1) [cos nx}
T n n2 -7

I
| —

= 1 cosnt — CcoSNnm
T n’ n?
=0
1 =
by = _  Jf(x) sinnxdx
T =TT
1 T -COS NX
= — f x d n
T =TT
1 -cosn -sinn o
= — (X){ j-(l)[ 2>]
o n n
-7
= 1 - MCOS N __  mCOSNT
T n n
= -271 cosnnt
nm
by =2 (-)™ [ 7 cosnm = (-1)7]

n

Substituting the values of a,, a, & b, in equation (1), we get

[ee]

> 2™ sinnx

n=1 n

f(x)

X = 23sinx - 1 sin2x +1 sin3x -......
1 2 3



Example 2

Expand f(x) =x? as a Fourier Series in the interval (-m <x <= ) and hence deduce
that

1. 1-1+21-1 4 .o, =
12 22 32 g2 12
2. 1 +1+21+1 + ... = 1
1?2 22 3 4 6
3 141 +1+1 + . =
1? 32 5 7° 8
o0
Let f(x) = a + X [ a,cosnx + b,sinnx ]
2 n=1
Here 0
a= 1 [ fx) dx
7T -TC

aQ = 2n°
3
T
an= 1 | f(x)cosnx dx
T =TT
T

= 1 [ x*cosnx dx
T -7



T
1 [ x*d [sinnx]

T -T n

et o) |

1
= — [ 2ncosnm + 27 cosnm
n n’ n’
4
an - — ('1)n
n2
T
bo= 1 [ f(x)sinnx dx
T o-m
T
= 1 [ X d [ -cosnx]
T -T n
= 1 [(xz) —cosnx] — (2X) [—sinnx}+ (2)[ cosnx]]
m n n’ n®
= 1 -t cosnm w2 COSNm  2COSnm  2COSNT
+ + -
T n n n® n®
b,=10

Substituting the values of ag, a, & by, in equation (1) we get

o0
fx)= 2+ Y 4 (-1)" cosnx

6 n=1 n’
o0
e, x*= m+Y 4 (-1)"cosnx
3 n=1 n?
o0

e, Xx°= m+4 Y (-1)" cosnx



= _m°+ 4 [-COSX +C0S2X —COS3X + ...
3 12 22 32
xE = 7 - 4 [COSX + COS2X + COS3X - ..... | ==m-mmmmmm-
3 12 22 32

Put x = 0 in equation (2) we get

3 T 22 3
e, m- =401 +1_+ 1 +......
3 17 22 3?
e, 1+ 1 + 1 +.... =m0 e (4)
1° 2? 3? 6

Adding equations (3) & (4) we get

(1 - 1 +1 -...0+(1 + 1+ 1 +.)=r" + 1°
12 2° 3 1> 22 12 6
e, 2 [1L,+1 +1 +... = 3
{Tz e } B
ie, 1 +1+ 1 +1 =1’
12 3 52 72 8
Example 3

Obtain the Fourier Series of periodicity 2r for f(x) = € in [-x, 7]

do 00
Let f(x)= ---- + Y(ancosnx +b,sinnx)  -------moeee- (1)
2 n=1



T
a=1 | f(x)dx
T -T

T
[ e*dx

=1
T-T

T
=1 [¢]

T -

- 2_ {en _ e—n}
21

ag =2 sinhn
T

T
1 [ f(x) cos nx dx
T

=1 {(ex [cosnx + n sin nx]}
T

e

—T

1
1
=
D E]
—
D
a
1
m|
El
~

= ] f(x) sin nx dx

T -T

T

[ *sin nx dx

=1
T-T

T

-

-1”
aall



T
=1 { e*__ (sinnx — n cosnx) }
-T

T (141

=1 {e_"{z-_n(-l)“} S e {-n(-l)”}}

| 1+n 1+n°

= _n-D)™ (e™-e")

n(1+n%)
b, = _2n(-1)™ sinhx
n(1+n%)
o0
f(x) =1 sinhr + X {2(-1)” sinhm cosnx + 2(-n)(-1)" sinhn sinnx}
n

n=1 | n(1+n% n(1+n°)

o0

e = 1 sinhz +2sinha ¥ (-1)% (cos nx—nsin nx
F t  n=1 I+n ( )

o0
ie, e*=  sinhn [1 +2Y (-1)" (cosnx—nsin nx)]
yio n=1 1+n’
Example 4
X in (O, n)
Let f(x) = {
(2n-x) in (m 2n)

Find the FS for f (x) and hence deduce that >, ---------- = -=-----
"=l (2n-1)? 8

do ©
Letf (x) =------- + Zlan cosnx + bysinnx  emmeeeeeo (1)
2 n=
1 _ﬂ 2n
Here g = ------ [ f(x) dx + [ f (x) dx
T |° n
1 rrc 2n
= - 1/ xdx+ ] (2m - x) dx
0 T
TE .




1 2n
an= ---- {I x cos nx dx + | (27 - X) cos

T

nx dx}

1 . sin nx on sin nx
SR N Y | S— + I(Zn X)d |--------
n |0 n

1 (cos nm 1 cos2nm
= emme e mmmdmen . mdddmcmmoana
n | n n? n’

1 (2cos nm 2
= < ------------ e e ————
T n? n?
2
= oo [(-1)"-1]
n’n

1 n
bn= ----- {I f(x) sin nx dx + sz(x) sin nx dx}

" oS nx —smnx ~£0S NX —sinnx Y] &
(X)E -------- (1) ---------- ] Eﬂ X)E -------- J— (1)[]



T n n 0 n n T
1 |-mcosnm T COSNTT
= e o S —— =0
T n n
ie, b,=0
T w 2
f(x) = - + eeee- [ (-1)"-1] cos nx
2 ™o
T 4 COSX C0S3X COS5X
= - { R e +..... } ----- (2
2 T 12 3?2 52

Putting x = 0 in equation(2), we get

n 4 1 1 1
0= — + o + - + ...,
2 T 12 32 52
1 1 1 n?
ie, ------ + —ee- + —eee- + ... = -
12 3? 52 8
o 1 e
R I
"=l (2n-1)? 8
Example 5

Find the Fourier series for f (x) = (x + x%) in (-n < x < 7t) of percodicity 27 and hence
deduce that zl (1/n? =7?/6.
n=

do

Let f(x) = ------- + Zl( an Cosnx + by sinnx)
2 =
1 &
Here, ap SR — [ (x+x?) dx
T -



I — | £ (x) cos nx dx

-7

1 Sin nX — cosnX — sinnx T
----- (¢ + ) [} - (1+2%) [J +(2) [J
T n n n® —n

11
1
i
a ! =
i
—2<—
'—\
+
N
a
N>
1
1
v
1
:I\.):H
! —
(]
I
—~
'—\
I
N
a
N\
P~
=
|~
:3
H_J

an = e

by =----- [ £ (x) sin nx dx



1 — 2= 1)" m (-1)"

T T T Tt [ S RPN [ T T
n n n n n?
2 (_ 1)ﬂ+1
bn =
n
. —4(1) 2(-1)™
f(x) = - + 2 |- COS NX + =-----m--mmmo- sinnx
3 ™ n? n
n COSX COS2X C0S3X sin2x
I { LT }2{ ......... .
3 12 22 32 2

Here x = -w and X = 7 are the end points of the range.
average of the values of f(x) at x = mwand X = -r.

f(-n)+f(n)
R (09 T T ——
2
-+ mt+n+nl
2
:’)‘[2
Putting x = &, we get
n 1 1 1
T = cmmeee Ty DA R FR— +
3 12 22 32
° 1 1 1
i.e, ------ S ——— S — S — +

n(-1)" D)

.. The value of FS at x = & is the



Exercises:

Determine the Fourier expressions of the following functions in the given interval

1.f(x) = (n-X)?, 0< X <21
2f(x)=0in-t<x<0
=nin0<Xx<mn
3.f(x) = x — X% in [-n,7]
4.f(x) = x(2r-x) in (0,27)
5.f(x) = sinh ax in [-&, 7]
6.f(x) = cosh ax in [-m, 7]
7fx)=1in 0<x<m
=2iNnt<X<2n
8.f(x) = -n/4 when -t < x <0
= n/Awhen0<x<mn
9.f(x) = cosax, in -t <X < 7, where ‘a’ is not an integer
10.Obtain a fourier series to represent e from x = -n to X = . Hence derive the series

for ©t/sinhm

2.3 Even and Odd functions

A function f(x) is said to be even if f (-x) = f (x). For example x?, cosx, X sinx, secx are
even functions. A function f (x) is said to be odd if f (-x) = - f (x). For example, x, sin X,
X COS X,. are odd functions.

(1) The Euler’s formula for even function is

do 0
f(x) =---—--- + 2. a, consnx
2 n=1
2 . 2
wherea, = ---- | f(x) dx ; ap = ----- [ £ (x) cosnx dx
0

0
T T



(2) The Euler’s formula for odd function is

f(x)= nZ=1bn sin nx

2 .

where by, = ------- [ £(x) sin nx dx
. 0

Example 6

Find the Fourier Series for f (x) = x in (- «, ®)
Here, f(x) =x is an odd function.

o f(x) :n%bn sinnx  -memee @

bn = -—--- [ f (x) sin nx dx
0

2 . ( -cosnx

Example 7



Expand f (x) = |x] in (-%, 7) as FS and hence deduce that

1 1 1 °
------ F ot e L S memmeee-
1?2 3 5 8
Solution

Here f(x) = |x| is an even function.

do o
(X)) = e + 2. an cos nx
2 n=1
2 T
8o = - | f(x) dx
T
2 Y
=] xdx
. 0
2 X2 b3
e | mm——— =TT
T 2 0
2 T
an = - | (X) cos nx dx
p 0
2 . sin nx
= e [ x d pemmmmmees
0 n
~
2 Sin nx — COS NX T
=) () () |
m n n’ 0
~

n [ n n’
2
an = ----- [(-1)"-1]
2
mn
s oo 2
o (X)= - + Y - [(-1)" - 1] cos nx
2 n=1 TmZ

T 4 COS X C0S3X C0S5X



1L 4 { 1 1 1 }
e + - S — T
2 m 1?2 3? 52
1 1 1 e
Hence, ------ e — S + = e
1 3? 57 8
Example 8
2X
Iff(x)= 1+--—-- in(-mn, 0)
T
2X
=1-—-—-- in(0,m)
T

Then find the FS for f(x) and hence show that Zl(Zn-l)'2 = 7%/8
n=
Here f (-x) in (-r,0) = f (X) in (0,n)
£ (%) in (0,) = f (x) in (-, 0)

.. f(x) is a even function

a-0 0
Let f(X) = -------- +2 a,cosnx e (1).
2 n=1
2 2X
8= -] |1 —-meeee- dx
s 0 s



2 . 2X )
I [ [ €os nx dx
Y 0 U
2 2X N sin nx
= .[ ] o [ [ ———
n° T n
2 2X sin nx -2 (— cosnx
“[ “J{ n}[nJLnZJO
4
an = === [(1- (- 1]
n°n?
o 4
fX)= Y - [1- (- 1)"]cos nx
n=1 n2n2
4 2C0S X 2C0S83x 2C0S85x
Rl S R + e to [ - )]
| 1° 3? 52
Put x = 0 in equation (2) we get
° 1 1 1
------- = { I et N }
4 12 3? 52
1 1 1 °
==> ceeee- N R— AR S .
1? 3? 52 8
© 1 n
or Y, -mmmmmmeee- = -mmeeee-
"=l (2n-1)? 8
Example 9

Obtain the FS expansion of f(x) = x sinx in (- < x<r) and hence deduce that



Here f (x) = xsinx is an even function.
a-O 0

Letf(x) = -------- + Y 8,C0SNX  =mmmmemeeeee- (1)
2 n=1

T
Now, a, = ----- [ xsin x dx
0

2 .
= -] xd (- cosx)
p 0

T

2

S — {(x) (- cosx) — (1) (- sin x) }
0

2
----- | f(x) cos nx dx
0
T

an

2
Sq— [ x sinx cosnx dx
0
T

1 .
= - X [sin (1+n)x + sin (1 — n)x] dx
0
s
1 — €0s (1+n)x cos (1 —n) x

n © 1+n 1-n

1 —cos (1+n)x cos (1 —n) X —sin (1+n)x sin (1-n) x
= (x){ ------------------------------ } B
T 1+n 1-n (1 +n)? (1-n)?
1 |-—mcos (1+n)w ncos(l-n)w
i T 1+n ) 1-n

- [cosm cosnz - sin 7t sinnm] [cosm cosnm - sin 7 sin nrt ]



1-n?
2(-1)"
ap = -——------ , Provided n=1
1-n?
Whenn=1
2 .
ap = ----- | xsinx cos x dx
b 0
1,
SR [ x sin2x dx
b 0
1 . - C0S2X
= —eme- [xd |-mmmmmmee
n © 2

Therefore, a; = -1/2

aO ©
f (X)= ------- +4a; COSX + 2 a,C0s nX
2 n=2
1 oo 2(-1)"
=1— - COSX + D —mmmmmmmem- cosnx
2 n=2 1_n2
1 (COSZX COS3X
ie, xsinx=1—----—-- CoOS X —2 - - -
2 1 3 8

Putting X = /2 in the above equation, we get

T {1 1 1



2 1.3 3.5 5.7
1 1 1 n-2
Hence, ------— ------ + emeeee- — R
1.3 15 5.7 4
Exercises:

Determine Fourier expressions of the following functions in the given interval:

i. f(x) =n/2+Xx,-1<x<0
2 -X,0<Xx<®

ii. f(x)=-x+1for+ -n<x<0
x+1for 0<x<mx

iii. f(x) = |sinx|, - i< x <=
iv. f((x) =% in-t<x<n

V. f(X) = Xcosx, -n<X<m
vi. f(X) = |cosx|, -m<Xx<m

2sinam| sinx

vii. Show that for -m < X <, sSinax = ---------| ==-=--m= - -oooe- SR -

2 2
T -

2.4 HALF RANGE SERIES

2sin 2x

22 _ 2

3sin3x

2 2
3 -a

It is often necessary to obtain a Fourier expansion of a function for the range
(0, ) which is half the period of the Fourier series, the Fourier expansion of such a

function consists a cosine or sine terms only.

(i) Half Range Cosine Series

The Fourier cosine series for f(x) in the interval (0,r) is given by

do 0
f(x)= ---- + X a, coshXx
2 n=1

2 n



where ag= ------- [f(x) dx  and
0

2
an = ------- [ (x) cosnx  dx
0
T
(if) Half Range Sine Series

The Fourier sine series for f(x) in the interval (0,r) is given by

Q0
f(x) = 2 b, sinnx
n=1
2 r
where b, = - OI f(x) sinnx  dx
T

Example 10
If cisthe constantin (0 <x < =) then show that

c= (4¢c/m) {sinx + (sin3x/3) +sin5x/5) + ... ... ...
Given f(x) =c in (0,n).

Let f(x) = Zlbn sinnx 2> ()
n:

2 n
by = - [ f(x) sin nx dx
- 0
2 n
SR [ ¢ sinnx dx
- 0

by = (2c/nm) [1 - (-1)"]

o0



- f(X) :n; (2¢/nm) (1-(-1)") sinnx

Example 11

Find the Fourier Half Range Sine Series and Cosine Series for f(x) = x in the interval
(0,m).

Sine Series
o0
Let f(x) = 2 by sinnx - @
n=1
2 n 2
Here by = - [ f(x) sinnxdx = ------ [ x d (-cosnx /n)
T 0 T 0
2 - cosnx - sinnx T
= - | (X)| - -(Q) |-
T n n? 0
2 -n(-1)"
T n
2(_1) n+1l
bn = -
n
o 2
fx)= Y - (-1)™ sinnx
n=1 n
Cosine Series
do 0
Let f(x) = ----+ > a, COSNX  --------- (2)
2 n=1
2 .
Here ag= ------ [ £(x)dx
0

T



= - [ xdx
. 0
2 X2 T
= mmm——— —-_— = Tc
T 2 0
2 p
an = ------ [ £(x) cosnx dx
. 0
2 n
IR [xd (sinnx/n)
. 0
2 sinnx - COSnX T
= - (X)| - -(Q) |-
P n n? 0
2
an = - ('1)n '1
n’m
o o 2
f(x) = -+ Y - [ (-1)" - 1] cosnx
2 n=1 nn
n 4 COSX C0S3X C0OS5Xx
S e S + - o
2 x 12 32 52

Example 12

Find the sine and cosine half-range series for the function function .
f(x)=x, 0<x<m?2

=7-X, TW2X<T

Sine series
o0
Letf (x) = X bysinnx.
n=1



T

b= (2/n)ff(x) sinnx dx

=(2/n){ [x sinnx dx +I(n -X) sin nx dx}
/2

Ti/2 -C0S nx T C0S NX
=(2/rn) fxd +I(n-x)d [%
n/2 n
S
-CoS nx sm nx
= (2/m) [ (1) J

€OS NX sm nx
+ (W'X)E ( 1)

n

ﬁ/Z)cos n(n/2) sin n(n/2) (n/2)cosn(n/2) sin (n/2)
= (2/n)

n? J
2sinn(n/2)
= (2/n) >
n

n n?

- =

4
= sin (nm/2)
n°n
o sin(nm/2)
Therefore, f(X)=(4/n) 2 sin nx
n=1 n’

sin3x  sin5x
ie, f(X)=(4/m)<sinx — + S




Cosine series
(e 0]
Let f(x) = (a,/2) +X a, cosnx., where
n=1
T

a = (2/n) | f(x) dx
0

/2 T
:(2/71){ [ x dx+ [ (m-x) dx}
0 /2

/2 T
=(2/n (X2/2) + (nx —x2/2) =72

0 /2
Y
an = (2/m) | (x) cosnx dx
0

/2

/2 (sinnXY © sinnx
=(2/m) de[ }I (n-x) d
0 n /2 n
/2
sinnx -cosnx
=(2/n x[ J-(l)[ J
n n?

/2 T
=(2/n)J [xcosnx dx + ] (n-x) cosnx dx
0

0
7T
sinnx cosnx
+ (n-X)[ J-(-l) -
n n? Jnl2
( =/2) sinn(n/2) cos n(w/2) 1

= (2/m) o —




cosnx  (w/2) sinn(n/2) cos n(w/2)

+|— - +
n’ n n’
cosn (/2) - {1+(-1)"}
=(2/n)
r]2
o 2cosn(m/2)-{1+(-1)"}
Therefore, f(X)= ( n/4)+(2/1) 2 cosnX .
n=1 n?
COS6X
=(n/4)-(2/n){C082X+ 5 Fommememeeeeas }
3
Exercises

1.0btain cosine and sine series for f(x) = x in the interval 0< x < 7. Hence show that 1/1°
+1/3% +1/5° + ... = n/8.

2.Find the half range cosine and sine series for f(x) = x? inthe range 0 < x < 1
3.0btain the half-range cosine series for the function f(x) = xsinx in (0,7)..
4.0btain cosine and sine series for f(x) =X (n-X) in0< X <1
5.Find the half-range cosine series for the function
6.f(x) = (mx) / 4, 0<x< (1/2)

= (n/4)(n-X), /2 < X < .
7.Find half range sine series and cosine series for

f(x) = xin 0<x< (n/2)

Oin m/l2<x<m.

8.Find half range sine series and cosine series for the function f(x) == = - x in the interval
0<x<m.
9.Find the half range sine series of f(x) = x cosx in (0,7)



10.0Obtain cosine series for
f(x) = cosx, 0<x<(m/2)

=0, n/2<x<m.

2.5 Parseval’s Theorem

Root Mean square value of the function f(x) over an interval (a, b) is defined as

b
[ [fx)]? dx
[F)] rms = a

b—a
The use of r.m.svalue of a periodic function is frequently made in the
theory of mechanical vibrations and in electric circuit theory. The r.m.s value is
also known as the effective value of the function.

Parseval’s Theorem

If f(x) defined inthe interval (c, c+2m ), then the Parseval’s Identity is given by

Cfrzn 2 ~ a0? 1 N
f(x dx = (Range
L4 2 J
2
— (2 ~ ao 1 N
L4 2 J

Example 13

Obtain the Fourier series for f(x) = x*in—n <x <=u

Hence show that 1 + 1 +1 +. . _ =
20 3 90
2’ 4 (-1)"
we have a,= 3, an = n ,  bn=0, for all n(Refer Example 2).

By Parseval’s Theorem, we have

T ao 0



[ [fx)P dx =2n — + ) (an? + by?)

_Tc 4
T r An o 16(-1) "
ie, [ x* dx =2 — + 12 Y
- 36 =t
G
T T o 1
ie, X =2n| —+8 Y —
5 |-t - 9 =l pt
T o o 1
= — + 8 _
5 9 nz=1 n4
w 1 o
=> - =
=l s 90
Hence 1 +1 +1 +. . _ o
R S o 90

2.6 CHANGE OF INTERVAL

In most of the Engineering applications, we require an expansion of a given
function over an interval 2/ other than 2.

Suppose f(x) is a function defined in the interval c< x < c+2£ The Fourier
expansion for f(x) in the interval c<x<c+2/( is given by

do 00 nmX nmXx
fx) = - +% | a cos--- +b, sin----
2 n=1 [ [
1 c+2 [
where ag= ----- [ f(x)dx
[ c
1 c+2 [
I R— [ f(x) cos (nmx / [)dx &
[ c
1 c+2 [
by= ----- [ f(x) sin (nnx / [ ) dx



Even and Odd Function
If f(x) is an even function and is defined in the interval ( c, c+2 /) then

do 0 NmX
fx) = - + X ay COS ----
2 n=1 [
2 [
where ag= ----- [ f(x)dx
[ 0
2 [
I J— [ f(x) cos (nmx / [) dx
[ 0

If f(x) is an odd function and is defined in the interval ( ¢, c+2 /) then

00 nmx
f(x) = z bn sin ----
n=1 [
where
2 [
ECR— [ f(x) sin (nnx / ) dx
[ 0

Half Range Series

Sine Series
00 nmX
f(x) = > b, sin ----
n=1 [
where
2 [
(N p— [ f(x) sin (nmx / £) dx
[ 0



where @ = ----- [ f(x)dx
[ 0
2 [
R [ f(x) cos (nmx / [) dx
[ 0
Example 14

Find the Fourier series expansion for the function

f(x) = (c/)x 1in 0<x<tl
(c/0)(2L-x) in £<x<2¢{

do 0 nmx nmx
Let f(X)=---—-- +2 | a, coS ------ + b, sin ------
2 ™ § §
1 2[
Now, ag = ----- [ f(x)dx
[ 0
1 L 20
S (c/0) [ x dx + (c/0) ] (20 -x) dx
L ° L
1 0 20
SR c/t) (x2/2)0+ (c/) (20x -x2/2)E
L
c
= (’=c
EZ
1 20
an= - [ f(x) cos (nx / € ) dx
L 0
1 L nmx 2L nmx
=—  [(c/Ox cos dx + | (c/0)(20-X) cos dx
¢ 0 L L L

c L sin(n7tx /0) 20 sin(nmx /0)
=—— < xd] — [ +] @t-x)d] ————
nm /L L nm /¢



L
4 e nmx ) Conx Y )
sin — -C0S —
c £ £
= —| 0N -\
2 nn N2
i i 0
\ \ N\ J g J /
~
4 Conax ) Conx ) 20
sin — -C0S —
£ £
+<Q2-x) () >
nn n’n’
i NG
- J - J E
G _J
%
c €2 cosnn (2 ¢?cos2nt €2 cosnm
=— _— +<— +
(2 n’m? n’m? n’m? nm?
c G
=— — {2cosnn—2}
2 n’m?
2C
=— {(-1)"-1}
n’m?
1 20 nmX
bo= — ] f(x).sin dx
£ 0 £
1 L nmx 28 nmX
=— 3 J(c/Ox sin—— dx + [ (c/0)(2L-X) sin dx
L 0 £ £ L

c L cos(nmx /0) 2L cos(nmx /0)
AN d{_} R PTI Ri
¢ 0 nm /¢ § nm /



c L L
= — | 0w ———

0 nn n’n?
0 0z
L . \ / S p,
~
e NTX ) ~ Nmx
cos — sin —
L L
+ <@ - ———p — (IR ———
nm nznz
T 2
9 . y .
c €2 cosnr 2 cosnr
= — — +
2 nw nm
= 0.
c 2c » {(¢-1D"-1}
Therefore, f(xX) = - + === X --mmemmmee- cos (nmx /€)
2 TCZ n=1 r]2

Example 15
Find the Fourier series of periodicity 3 for f(x) = 2x — x?.in 0<x<3.
Here 20 = 3.
SL=3/2.
A 2nmX 2nmX
Let  f(X)=---—-- +Y |a, cos ------ T s p—
2 n=1 3 3

3
where a,= (2/3) {) (2x - x?) dx

=@/ 3){2 (x%/2) — (x%/3) dx }z

N 2L




3 2nN7X
an= (2/3) OJ (2X - X?) COS ------ dx
3
3 sin(2nmnx /3)
=(@2/3) [ @2x-xd
0 (2nn/3)
3
sin(2nmnx /3) cos(2nnx /3) sin(2nnx/3)
= 2/3)] (2x-X%) | ——— | - (2-2x) |- +(-2) |- —
(2nn/3) (4n*7%/9) (8n°r%/27)
= (2/3){-(9/n2n2)— (9/2n2n2)} = - 9/n’t®
3 2N7X
bo= (2/3) | (2% - X?) sin - dx
0 3
3 cos(2nnx /3)
=@2/3) | 2x-x¥)d|- ——
0 (2nm/3)
3
, cos(2nnx /3) sin(2nmnx /3) cos(2nmx/3)
=@ @) T ey TP anze) T | entren) 0
= (2/3) {(Q/Znn)— (271 4n7®) + (271 4n3n3)}
=3/nn
o 2n7X 2N7X
Therefore,  f(x) = zl - (9/n?*7®) cos ------ +(3/nm) sin ------
n=

Exercises

1.0btain the Fourier series for f(x) = nx iN0 < x < 2.
2.Find the Fourier series to represent x* in the interval (-£ £).
3.Find a Fourier series in (-2, 2), if

f(x)=0,-2<x<0



=1,0<x<2
4.0btain the Fourier series for
f(x) = 1-xin 0<x</[
= 0 in [<X<2/[ Hencededuce that
1-(13)+(/5) - (/D +...=7/4 &
(1/1%) + (1/3%) + (1/5%) + ... = (7°/8)

5.1f f(X) = nx, 0<x<1
=n(2-x), 1 <x <2,

Show that in the interval (0,2),

COS X COS3mX  COS 5mx
f(x) = (n/2) — (4/x) |------ - + e + - +

6.0Dbtain the Fourier series for

f(x)=xin0<x<1
=0inl<x<?2

7.0btain the Fourier series for

f(x) = (ex/f)in0<x</[
=(c/lf)@r-x)Inlf<x<2[.

8.0Dbtain the Fourier series for

fx)= ([+X ), - [<x <0.
= ([-x ), 0<x<[

0 1 T

Deduce that > -------- R
1 (2n-1)? 8

9.0btain half-range sine series for the function

f(x) = cx in0<x<(//2)

c(l—x) in(L2)<x<[(

10.Express f(x) = x as a half —range sine seriesin0 <x <2

11.0Obtain the half-range sine series for e*in 0 < x < 1.



12.Find the half —range cosine series for the function f(x) = (x-2)? in the interval
O<x<2

o0 1 TEZ
Deduce that ) e— SR
1 (2n-1) 8

2.7 Harmonic Analysis

The process of finding the Fourier series for a function given by numerical values
is known as harmonic analysis.
ag o
f(X)= ------- + 2 (an cosnx + by sinnx), where
2 n=1

ie, f(x) = (ao/2) + (a1 cosx + by sinx) + (a; cos2x + b, sin2x) +

(a3c0s3X + basin3x)+...  ---mmmm-me-o- 1)
2 f(x)
Here ap = 2 [mean values of f(x)] = -----------
n
2 Y f(x) cosnx
a, = 2 [mean values of f(x) cOSNX] = -------=-==mnnmmmnmm-
n
2 Y f(x) sinnx
& by =2 [mean values of f(x) sinnx] =
n

In (1), the term (a;cosx + by sinx) is called the fundamental or first harmonic,
the term (axcos2x + b,sin2x) is called the second harmonic and so on.

Example 16

Compute the first three harmonics of the Fourier series of f(x) given by the
following table.

X: 0 /3 21/3 o 47t/3 5m/3 21

f(x): 1.0 1.4 1.9 1.7 1.5 1.2 1.0

We exclude the last point x = 2.
Let f(X) = (ap/2) + (a1 cosx + by sinx) + (a2 cos2x + by SiN2X) +............

To evaluate the coefficients, we form the following table.




X f(x) COSX sinx C0S2X sin2x C0S3X sin3x
0 1.0 1 0 1 0 1 0
/3 1.4 0.5 0.866 -0.5 0.866 -1 0
27n/3 1.9 -0.5 0.866 -0.5 -0.866 1 0
i 1.7 -1 0 1 0 -1 0
47/3 1.5 -0.5 -0.866 -0.5 0.866 1 0
57/3 1.2 0.5 -0.866 -0.5 -0.866 -1 0
2 Y1(x) 2(1.0+14+19+17+15+1.2)
Now, ag = = =29
6 6
2 Y1(x) cosx
= ---mmmmmmmeme- = -0.37
6
2 Y f(x) cos2x
dp = —mmmmmmmmmmmmeeeeee- =-01
6
2 > f(x) cos3x
A3 = --mm-m-mmmmmmm--oe- =0.033
6
2 > f(x) sinx
by = - =0.17
6
2 Y(x) sin2x
b= --------m-e-m---- = -0.06
6
2 Yf(x) sin3X
b3 = memmmmmmmssssmoeeee- =0
6

- f(x) =1.45-0.37cosx + 0.17 sinx — 0.1cos2x — 0.06 sin2x + 0.033 cos3x+...

Example 17
Obtain the first three coefficients in the Fourier cosine series for y, where y is

given in the following table:

X: 0 1 2 3 4 5

y: 4 8 15 7 6 2
Taking the interval as 60°, we have

0: 0° 60° 120° 180° 240° 300°

X: 0 1 2 3 4 5

y: 4 8 15 7 6 2

.. Fourier cosine series in the interval (0, 27) is
y = (ap/2) + a;c0s0 + a,c0s260 + a3cos30 + .....

To evaluate the coefficients, we form the following table.




0° c0s0 €0s20 c0s30 y y C0sO y c0s20 | y cos30

0° 1 1 1 4 4 4 4

60° 0.5 -0.5 -1 8 4 -4 -8

120° -0.5 -0.5 1 15 -7.5 -71.5 15

180° -1 1 -1 7 -7 7 -7

240° -0.5 -0.5 1 6 -3 -3 6

300° 0.5 -0.5 -1 2 1 -1 -2
Total 42 -8.5 -4.5 8

Now, ag=2(42/6) =14

a,=2(-8.5/6) =-2.8

a=2 (-45/6)= -15

a; = 2 (8/6) = 2.7

ny=7-2.8c0s0 - 1.5c0s20 + 2.7 cos30 + .....

Example 18

below. Show that f(x) =0.75 + 0.37 cos6 + 1.004 sinf,where 6 = (2zx )/T

The values of x and the corresponding values of f(x) over a period T are given

X: 0 T/6 T/3 T/2 2T/3 5T/6 T
y: 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98
We omit the last value since f(x) at x = 0 is known.
Here 6 = 2nix
.

Let f(x) = F(0) = (a0/2) + a3 cos6O + b sino.

To evaluate the coefficients, we form the following table.

When X varies from 0 to T, 0 varies from 0 to 2x with an increase of 27 /6.

0 y cosO sind y C0SO y sin®

0 1.98 1.0 0 1.98 0

/3 1.30 0.5 0.866 0.65 1.1258

27n/3 1.05 -0.5 0.866 -0.525 0.9093

I1 1.30 -1 0 -1.3 0

47/3 -0.88 -0.5 -0.866 0.44 0.762

57/3 -0.25 0.5 -0.866 -0.125 0.2165
4.6 1.12 3.013

Now, ap =2 (¥ f(x)/ 6)= 1.5




a; =2 (1.12/6) = 0.37
a, = 2 (3.013/6) = 1.004

Therefore, f(x) =0.75 + 0.37 cos6 + 1.004 sin©



Exercises
1.The following table gives the variations of periodic current over a period.

t(seconds) : O T/6 T/3 T/2 2T/3 5T/6 T

A (amplitude): 1.98 1.30 1.05 130 -0.88 -0.25 1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the
amplitude of the first harmonic.

2.The turning moment T is given for a series of values of the crank angle 6° = 75°

6° ) 0 30 60 90 120 150 180

T° : 0 5224 8097 7850 5499 2626 O
Obtain the first four terms in a series of sines to represent T and calculate

T for 6 = 75°

3. Obtain the constant term and the co-efficient of the first sine and cosine terms in the

Fourier expansion of ‘y’ as given in the following table.
X : 0 1 2 3 4 5
Y ; 9 18 24 28 26 20

4. Find the first three harmonics of Fourier series of y = f(x) from the following data.
X:0° 30° 60° 90° 120° 150° 180° 210° 240° 270° 300° 330°
Y:298 356 373 337 254 155 80 51 60 93 147 221

2.8 Complex Form of Fourier Series

The series for f(x) defined in the interval (c, c+2x) and satisfying

o0 .
Dirichlet’s conditions can be given inthe form of f(x)= Y c,e™™,

n=-o
where , c+2n .
ch= 1 [ fx) e '™dx
2n °©

In the interval (c, ct+2€), the complex form of Fourier series is given by

fx) = Yc, e

N=-c0

where, . [ fx) e" dx
c



Example 19

X

Find the complex form of the Fourier series f(x) = e ™ in -1<x <.

o0 inmx
We have fxX) = Y cn e
N=-co
| -inmx
where = 1 [ e* e dx
_2 -1
1 -(+inm)x
ch = 1 € dx
5 1
— 1 e-(l+i nm) x| 1
2 |- (1+inm)| 4

= —1 - |
-2( 1+im-5){e-(l+|nn)x e (l+|nrr)}

=  (l-inm) [e’(cosnn—isinnm) -e(cosnm +isinnm) ]
-2 (1+n*n?)

= (l-inm) cosnm(e*t-e)
-2 (1+n’n®)

(1-inm)
Cp = -=---mm-mm- (-1)" sinh1

(1+n°7%)

nnXx

inm i
LX) =Y e (-1)" sinhl e

Example 20

Find the complex form of the Fourier series f(x) =€*in -n<x <m.

o0
We have f(x) = Y Cpe'™
n=-0
T[ .
where C, = ------ | f(x) e "™dx

2T -7



- J‘ ex e —i nx dx
2n -7
1 T
e J‘ e (1-i n)xdx
2n -1

1]
I\)|I—\
a

D
—~~
N
L.l 5
S| %
N
- J

a

1 [ i _g - (L) g
2n(1-in)

e [e" (cosnm—isinnt)—e ™ (cosnm+isinnm]

o (-1)"(1+in)sinhx _
fx) = X - - e'™
n=-o (1+n)nx

Exercises

Find the complex form of the Fourier series of the following functions.
1f(x) =e*, -[<x< [

2.f(x) = cosax, -t <X <.

3.f(x) =sinx,0<x <.

4.f(x)=e”, -1<x< 1

5.f(x) = sinax, a is not an integer in (-x, ).



2.9 SUMMARY(FOURIER SERIES)

A Fourier series of a periodic function consists of a sum of sine and cosine terms.
Sines and cosines are the most fundamental periodic functions.The Fourier series is
named after the French Mathematician and Physicist Jacques Fourier (1768 — 1830).
Fourier series has its application in problems pertaining to Heat conduction, acoustics,

etc. The subject matter may be divided into the following sub topics.

FOURIER SERIES

A\ 4 A 4 A 4

A 4

Series with Half-range series Complex series

Harmonic Analysis

arbitrary period

FORMULA FOR FOURIER SERIES

Consider a real-valued function f(x) which obeys the following conditions called

Dirichlet’s conditions :

1. f(x) is defined in an interval (a,a+2l), and f(x+2l) = f(x) so that f(x) is a periodic

function of period 21.

2. f(x) is continuous or has only a finite number of discontinuities in the interval

(a,a+2l).

3. f(x) has no or only a finite number of maxima or minima in the interval (a,a+2l).

Also, let

a+2l

%z%lu@m
a+2l

1)

an:%j f@ﬁm{ﬁf)mm, N=123,... (2)

a
a+2l

1 . (nrx
b, :I— I f(x)sm(TJde, =123,...... (3)

a

Then, the infinite series % + Zan cos(nl—ﬂjx +b, sin(nl—ﬂjx
=1

(4)




is called the Fourier series of f(x) in the interval (a,a+2l). Also, the real numbers a,, as,
a, ....an, and by, by, ....b, are called the Fourier coefficients of f(x). The formulae (1),
(2) and (3) are called Euler’s formulae.

It can be proved that the sum of the series (4) is f(x) if f(x) is continuous at x. Thus we
have

f(x) = % + ian cos(nl—”)x +b, sin(nl—ﬁjx ....... (5)
n=1
Suppose f(x) is discontinuous at X, then the sum of the series (4) would be
%[f x)+ f(x)]

where f(x*) and f(x) are the values of f(x) immediately to the right and to the left of f(x)
respectively.

Particular Cases
Case (i)

Suppose a=0. Then f(x) is defined over the interval (0,21). Formulae (1), (2), (3) reduce
to

12I

= ! f (x)dx

a, = %T f (x)cos(nT”jxdx, n=12,.....00 (6)
1% . (nrx

b, = f-([ f (x)sm(zjdx,

Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (0,2l).

If we set I=m, then f(x) is defined over the interval (0,2r). Formulae (6) reduce to
2z
a0 = = j f (x)dx
%

2z
a, = lj f (x) cos nxdx
Ty , n:1,2,.....oo (7)

2
b, =1jf(x)sin nxdx n=1,2,.....0
T 0

Also, in this case, (5) becomes

f(x) = %+ian COS NX + b, sin nx (8)

n=1



Case (ii)

Suppose a=-I. Then f(x) is defined over the interval (-1, I). Formulae (1), (2) (3) reduce
o

1 II 0k n=12,...... © 9)

j £(x) cos( jxdx b, =|1 [1 (x)sin[nl—”jxdx,

Then the right-hand side of (5) is the Fourier expansion of f(x) over the interval (-1, I).

If we set | = =, then f(x) is defined over the interval (-x, ). Formulae (9) reduce to
a0 = = j f (x)dx
4 -

a, = 1 J' f (x) cos nxdx
T \ n=1,2,......o  (10)

b, :i_[f(x)sin nxadx n=1,2,.....0
72.—7[
Putting | = in (5), we get
f(x) = %+Zan cos nx + by, sin nx
n=1

Some useful results :

1. The following rule called Bernoulli’s generalized rule of integration by parts is useful
in evaluating the Fourier coefficients.

Iuvdx = UV, —UV, +U 'V, +..e.
Here u’,u”,..... are the successive derivatives of u and
A :J.vdxv :Ivdx ......

We illustrate the rule, through the (ollgggl j (Jlegm nxj (cosnx]

Ix sinnxdx = x

prevmee( foel o o)



2. The following integrals are also useful :

ax

e
a’+

[e™ cosbxdx = ~[acosbx + bsin bx]
b

ax

Ieax sinbxdx = ——— [asinbx —bcosbx]

a’+b
3. If‘n’ is integer, then
sinnt=0, cosnm = (-1)", sin2nmt =0, cos2nn=1
ASSIGNMENT

1. The displacement y of a part of a mechanism is tabulated with corresponding angular
movement x° of the crank. Express y as a Fourier series upto the third harmonic.

X 0 30 60 90 120 150 180 210 240 270 300 330
y 180 110 030 016 150 130 216 125 130 152 1.76 2.00

2. Obtain the Fourier series of y upto the second harmonic using the following table :
X’ 45 90 135 180 225 270 315 360

y 4.0 3.8 2.4 2.0 -1.5 0 2.8 3.4

3. Obtain the constant term and the coefficients of the first sine and cosine terms in the
Fourier expansion of y as given in the following table :

X 0 1 2 3 4 5

y 9 18 24 28 26 20
4. Find the Fourier series of y upto the second harmonic from the following table :

X 0 2 4 6 8 10 12

Y 9.0 18.2 24.4 27.8 27.5 22.0 9.0
5. Obtain the first 3 coefficients in the Fourier cosine series for y, where y is given below

X 0 1 2 3 4 5
y 4 8 15 7 6 2



UNIT -1

APPLICATIONS OF PARTIAL DIFFERENTIAL
EQUATIONS

3.1 INTRODUCTION

In Science and Engineering problems, we always seek a solution of the
differential equation which satisfies some specified conditions known as the boundary
conditions. The differential equation together with the boundary conditions constitutes a
boundary value problem. In the case of ordinary differential equations, we may first find
the general solution and then determine the arbitrary constants from the initial values. But
the same method is not applicable to partial differential equations because the general
solution contains arbitrary constants or arbitrary functions. Hence it is difficult to adjust
these constants and functions so as to satisfy the given boundary conditions. Fortunately,
most of the boundary value problems involving linear partial differential equations can be
solved by a simple method known as the method of separation of variables which
furnishes particular solutions of the given differential equation directly and then these
solutions can be suitably combined to give the solution of the physical problems.

3.2Solution of the wave equation

The wave equation is
o’y %y
R i — 1).
ot ox°
Let y = X(X) . T(t) be the solution of (1), where ‘X’ is a function of ‘x’ only and ‘T’ is a
function of ‘t” only.
%y oy
Then — =XT" and — =X"T.
ot’ ox

Substituting these in (1), we get

XT' = a°X"T.

XH TH




Now the left side of (2) is a function of ‘x’ only and the right side is a function of ‘t’ only.
Since ‘x’ and ‘t” are independent variables, (2) can hold good only if each side is equal to
a constant.

X" T"
Therefore, = = k(say).

X a’T
Hence, we get X" —kX=0 and T"—a’kT = 0. -=-mmmmmmmmmm- Q).

Solving equations (3), we get

(1) when °k’ is positive and k = 22, say

- AX
ant

X=ce™+c¢ce
T =c3e™+ ¢, e

(i1) when ‘k’ is negative and k = 22, say

X =5 COSAX + CgSiNAX
T =c;cosait+ cgsinait

(ii1)) when ‘k’ is zero.

X =Cg X + Cyg
T =cyyt+ ¢

Thus the various possible solutions of the wave equation are

y =(cie™ +coe™(cse™+cpe™) (4)
y =(C5 COSAX + CgSINAX) (C; cosait+ CgsSinait) — ----------- (5)
Yy = (CgX +cCyp) (Ciat+ C12) e (6)

Of these three solutions, we have to select that particular solution which suits the
physical nature of the problem and the given boundary conditions. Since we are dealing
with problems on vibrations of strings, ‘y’ must be a periodic function of ‘x” and ‘t’.

Hence the solution must involve trigonometric terms.
Therefore, the solution given by (5),

i.e, Yy =(Cs5C0OSAX + CgSinAX) (C7 cosart+ cgsinaat)



is the only suitable solution of the wave equation.

llustrative Examples.

Example 1
If a string of length ¢ is initially at rest in equilibrium position and each of its points is

given

oy X
the velocity [—J = Vo sin — , 0 < X < {. Determine the displacement y(x,t).
ot Jt=0 10

Solution

The displacement y(x,t) is given by the equation

%y oy
— = — e (1)

ot ox’

The boundary conditions are
i. y@Ot)=0,for t>0.
. y(tt) =0, for t>0.
. y(x,0)=0,for0<x<¢.

oy X
iv. — = Vosin— ,for0<x<¢.
ot Jt=0 L

Since the vibration of a string is periodic, therefore, the solution of (1) is of the form
y(x,t) = (Acosix + Bsinix)(CcosAiat + DsinAat) ------------ (2)

Using (i) in (2) , we get

0 = A(Ccoshat + DsinAat) , for all t > 0.



Therefore, A=0

Hence equation (2) becomes

y(x,t) = B sinAx(CcosAat + DsinAat) ------------ 3

Using (ii) in (3), we get

0 = BsinAt (CcosAat + DsinAat), for all t > 0, which gives AL = nm.

nm
— , n being an integer.
L

Hence, A=

nmx nrat

Thus, y(x,t) = Bsin

Using (iii) in (4), we get

[CCOST + Dsin

nnat}
£

nmX
0 = Bsin .C
L
which implies C=0.
nmx nmat
y(x,t) = Bsin Dsin
e 10
NmX nrat
= Bssin . sin , Where B;= BD.
10 10
The most general solution is
© N7 nnat
y(x,t) = > By, sin Sin - (5)
n=1 L L
Differentiating (5) partially w.r.t t, we get
oy © NmX nmat nma
= X Bpsin .C0S
ot n=1 e e e



Using condition (iv) in the above equation, we get

X 0 nma nmx
VoSin— = X Bn. .sin
L n=1 L L
X mia /194 2na 271X
i.e, Vosin— = B;. . sin + B,. . sin +
L L L L L

Equating like coefficients on both sides, we get

ma 2ma 3na
Bi— =v, B;. =0, Bj =0, « - -
L L L

Vol
i.e, Bl:_, 82283284285:-.-.....:0.
ma

Substituting these values in (5), we get the required solution.
Vol X mat

sin . sin
ma £ L

e,  yxt)=

Example 2

A tightly stretched string with fixed end points x = 0 & x = { is initially at
rest in its equilibrium position . If it is set vibrating by giving to each of its points a
velocity
oylot = kx(L-x) at t = 0. Find the displacement y(x,t).

Solution
The displacement y(x,t) is given by the equation

%y &y

The boundary conditions are



i. y@Ot)=0,for t>0.
. y(t) =0, for t>0.
ii.  y(x,0)=0, for0<x< L.

oy
iv. — = kx(€ —x), for0 <x < L.
otJt=0

Since the vibration of a string is periodic, therefore, the solution of (1) is of the form
y(x,t) = (Acosix + Bsinix)(Ccosiat + DsinAat) ------------ 2
Using (i) in (2) , we get
0 = A(Ccoshat + DsinAat) , forall t > 0.
which gives A =0.
Hence equation (2) becomes
y(x,t) = B sinAx(CcosAat + DsinAat) ------------ 3)
Using (ii) in (3), we get
0 = BsinAt(CcosAat + DsinAat), for all t>0.

which implies Al = nn.

nm
Hence, A= —— ,nbeing an integer.
L
nmX nmat nmat
Thus, y(x,t) = Bsin [Ccos + Dsin J ------------------ 4)
L L L
Using (iii) in (4), we get
nmX
0 = Bsin -C
e
Therefore, C=0.
nmXx nmnat
Hence, y(x,t) = Bsin Dsin
0 L
NmX nmat
= Bssin . sin , Where B;= BD.

10 L



The most general solution is

oy nmXx nmat
y(x,t) = 2 By sin Sin ——  —mmmeeee- (5)
n=1 L L
Differentiating (5) partially w.r.t t, we get
oy o0 nmX nmat nma
—— = X B sin .C0S
ot n=1 L L L
Using (iv), we get
00 nma NnmX
kx(€-x) =2 Bp. .sin
n=0 L L
nra 2 0 nmx
i.e, Bp- =— | f(x). si— dx
e e 0 ¢
2 L nmx
ie, B, =— [ f(x).sin— dx
nra O L
2 L nmx
= [ kx(€—x) sin— dx
nca 0 L
nnx
L —C0S—
2k [ e
=— ) (tx=x»d
nma 0 nmx
=
.  nax ) ~ X
-C0S —— -sin —
2k 14 e
=— | (x-x%)d - (£-2x)
nna nn n’n
T s
N /
.




2k -2c0snm 2

= — +
nra n’r’ n°r
3 ¢
2k 263
=— . {1 - cosnm}
nra n’r
4 ke®
ie, Bp= {1 - (-D"%
n‘r* a
8ke3
or B, = , ifnisodd
n‘n* a
0, if n is even
Substituting in (4), we get
% 8ke® nrat nmX
y(x,t) = 2 siF—— siF——
N=135,...... n‘r* a £ £
Therefore the solution is
8k} | (2n-1)mat (2n-1)nx
y(x,t) = > sin sin
r*a n=1 (2n-1)* i L
Example 3

A tightly stretched string with fixed end points x = 0 & x = { is initially in a
position given by y(x,0) = yesin®(nx/t). If it is released from rest from this position, find
the displacement y at any time and at any distance from theend x =0 .

Solution

The displacement y(x,t) is given by the equation

&y &y
=" —— e (1)
ot? ox?



The boundary conditions are
(i) yO,t)=0, vt>0.
(ii) y(€,t) =0, Vt>0.

(iii) ( oy
—_— = 0, forO<x<{.
t=0

ot
(iv) y(x,0) = yosin*((nx/0), for 0 < x < (.

The suitable solution of (1) is given by

y(x,t) = (Acosix + Bsinix)(CcosAat + DsinAat) ------------ (2)
Using (i) and (ii) in (2) , we get
nm
A=0 & rA=—
e
NnmX nmat nrat
y(x,t) = B sin (Ccos + Dsin e (3)
e 0 0
oy nmx nmat nma nmat nma
Now, — = Bsin - Csin + Dcos .
ot e 0 19 e
Using (iii) in the above equation , we get
nmX nma
0 =Bsin D
e L
Here, B can not be zero . Therefore D = 0.
Hence equation (3) becomes
NnmX nrat
y(x,t) =B sin . Ccos
10 e
nmtX nrat
= B;sin . Cos , Where B; = BC
10 10

The most general solution is
o0 nmX nrat




yxt) = ¥ Bpsi——  cOS—— ------ (4)

n=1 £ L
Using (iv), we get
nw o0 nmx
yosin® — = Y Bgsin
L n=1 £
o0 nmx 3 X 1 3mX
i.e, X Bpsin — =y sin - sin
n=1 L 4 L 4 L
X 27X 3nX
i.e, Bssihn— +B,sin— +Bszsin— +....
L £ £
3Yo i1 Yo 3nX
= sin - sin
4 L 4 L

Equating the like coefficients on both sides, we get

3Yo -Yo
B;L: _,B3:_,BZZB4 =...=0.
4 4
Substituting in (4), we get
3Yo X mat Yo 3nX 3mat
y(x,t) = — sin — . cos - sin .C0S —
4 14 L 4 e e

Example 4

A string is stretched & fastened to two points x = 0 and x = { apart.
Motion is
started by displacing the string into the form y(x,0) = k(£x-x%) from which it is
released at
time t = 0. Find the displacement y(x,t).

Solution
The displacement y(x,t) is given by the equation
%y &y
= S — (1)
ot x>

The boundary conditions are



(i) y(O¢t)=0, vt>0.
(ii) y(e,t) =0, Vt>0.

(iii) (" oy
—_— =0, forO0<x<{.
ot Jt=0
(iv) y(x,0) = k(x —x?), for 0 <x < L.

The suitable solution of (1) is given by

y(x,t) = (Acosix + Bsinix)(Ccosiat + DsinAat) ------------ 2
Using (i) and (ii) in (2) , we get
nm
A=0 & A=—.
e
NnmX nmat nrwat
y(x,t) = B sin (Ccos + Dsin ) - (3)
e 0 0
oy nmx nmat nma nmat nma
Now, — = Bsin - Csin + Dcos
ot e 10 L L e
Using (iii) in the above equation , we get
nnX nma
0 =Bsin D
e e
Here, B can not be zero
D=0
Hence equation (3) becomes
NnmX nmat
y(x,t) =B sin . Ccos
10 e
nmx nmat
= Bssin . COoS , where B; = BC
e ¢
The most general solution is
o0 nmTX nrat

y(x,t) = X Bpsin——  cos




Using (iv), we get

i.e, B

nr

3

n=1

L

o0

kx(€x —x%) = Y Bysin

n=1
The RHS of (5) is the half range Fourier sine series of the LHS function .

nmXx

L

L [F19¢
" Bp=— [f(x).sin dx
¢ J L
0
C onax )
£ -C0OS——
2k [ (tx-x%)d i
= nm
£ 0 -
L
. _/
( - ~
nmX
-cos
2k L
= fzx-xz)d |- (-2x)
L nn-
N
e I
nmx
cos —
£
+(-2) >
n3n3
nr
g ) )O
2k | -2cos nx 2
= — +
L n’r n’r’
N ¢
2k 203
= — .— {1- cos nm}
¢t
4k 2
= — {1-(-1)"}

~
NmX
-sin —
L
DEII:E
L 0




8k 2

or B, =< n°z® ,ifnisodd
0, if niseven
o 8ke? nrat nmx
Syt =2 CcoS sin
n=odd nz® L L
8k o 1 (2n-1)rat (2n-1)mx
or y(x,t) = X coS sin
m° n=1 (2n-1)° i L
Example 5

A uniform elastic string of length 20 is fastened at both ends. The
midpoint of the string is taken to the height ‘b’ and then released from rest in
that position . Find the displacement of the string.

Solution
The displacement y(x,t) is given by the equation
%y oy
— =d e (1)
ot ox?

The suitable solution of (1) is given by
y(x,t) = (Acosix + Bsinix)(CcosAat + DsinAat) ------------ (2)

The boundary conditions are
(i) y(Ot=0, Vt>0.
(i) y(t,t) =0, Vt>0.

(ii))( oy
— | =0, for0<x<2¢(.

ot Jt=0



0(0,0) 0 B20,0) x

b/Ox,  0<x<l

(iv) y(x,0) =
-(b/0)(x-20), L<x<2¢

[Since, equation of OA is y = (b/€)x and equation of AB is (y-b)/(0-b) = (x-£)/(2£-0)]

Using conditions (i) and (ii) in (2), we get

nm
A=0 & A=
20
nmx nnat nmat
y(x,t)=BsinT (Ccos™  +Dsin ) ---mmmmmm- (3)
20 20 20
oy nmX nmat nma nmat nma
Now, = Bsin | -Csin +Dcos—
ot 20 20 20 20 20

Using (iii) in the above equation , we get

nmx nra
0 =Bsin D
20 20

Here B can not be zero, therefore D =0.
Hence equation (3) becomes

nmx nmat
. Ccos
20 20

nmx nmat

y(x,t) =B sin



= Bssin . COS , Where B; = BC
20 20
The most general solution is
0 nmtX nnat
y(x,t) = 2 BpSin——  €0S —— ---mmmmmmmmemeen 4)
n=1 20 20
Using (iv), We get
00 nmX
y(x,0) = 2 By.sin -(5)
n=1 20
The RHS of equation (5) is the half range Fourier sine series of the LHS function .
2 20 nmx
. Bn=— [f(x).sin dx
20 J 20
0
~
1 L nmx 20 nmx
=— < [f(x).si—— dx + [ f(x).sin— dx
¢ | J 20 J 20
L0 L
~
1 £ b nmx 20 -b nmX
=— ! [T xsim— dx + [ —(x-20) sin dx
e | J e 20 J 20
L0 - ¢
s nmX ™ ~ nmX ~N )
¢ | -cos— 20 -C0S —
1 b [ 20 b [ (x20)d Y
= J xd -— ) - |\
4 £ 0 nw t ¢ nw
20 20
~ ~ \ _
\ y
~ N
( C nnx ) onmx )
—C0S— —sin—
1 ) b 20 20
= |7 |(x) - -
L |t nn n’n?
20 407




nmw nmw nmw nm

i ) 3\
-Lcos— sin — Lcos— sim——
b 2 2 2 2
= — + + +
n’n? _nn ¢
4¢2 20 42
= J
n’n?
Therefore the solution is
0 nrat nmx
y(x,t)= > 8bsin(nn/2) cos sin —
n=1 n’m’ 20 2L

Example 6

A tightly stretched string with fixed end points x =0 & x = U is
initially in
the position y(x,0) = f(x). It is set vibrating by giving to each of its points a
velocity

oy

—— =g(x)att=0. Find the displacement y(x,t) in the form of Fourier series.
ot

Solution

The displacement y(x,t) is given by the equation
2 2
NG

ot? ox?



The boundary conditions are
(i) y(0t)=0, Vt>0.
(i) y(e,t) =0, Vt>0.
(iii) y(x,0) = f(x) , for 0 < x < L.

(iv)] ou
— | =9(x), for0<x<L.
ot Jt=0

The solution of equation .(1) is given by

y(x,t) = (Acosix + Bsinix)(CcosAat + DsinAat) ------------ 2

where A, B, C, D are constants.
Applying conditions (i) and (ii) in (2), we have

nm
A=0 and A= 7

Substituting in (2), we get

nmx nmat nmat
y(x,t) = B sin (Ccos + Dsin )
L L L
nmx nmat nmat
y(x,t) = sin (B1cos + Dy sin ) where B; =BC and D;=BD.
L L L

The most general solution. is

0 nmrat nmrat nmX
y(xt)= X | Bycos—— +Dj.sin T ?)
n=1 L L L




Using (iii), we get

o0 nmX
f(x) = X Bp.sin - (4)
n=1 £

The RHS of equation (4) is the Fourier sine series of the LHS function.

2 0 nnX
" Bp=— [f(x).sin dx

(. §

0
Differentiating (3) partially w.r.t ‘t’, we get

oy o0 nmat nma nmat nma nmX
- = -B, sin—— + Dy .cos | sin——
ot n=1 ¢ ¢ e ¢ e

Using condition (iv) , we get

© nna nmX
gx) = 2 [Dn J.sin ----------------- (5)
n=1 L L
The RHS of equation (5) is the Fourier sine series of the LHS function.
nma 2 0 nnX
Dn. — = — [g(x).sin dx
0 ¢ ) §
0
2 L nmx
= Dp=—— (g(x).sin dx
nma J L
0

Substituting the values of B, and D, in (3), we get the required solution of the
given equation.

Exercises
(1) Find the solution of the equation of a vibrating string of length ‘£, satisfying the
conditions

y(0,t) = y(¢,t) =0 and y = f(x), dy/ot =0att=0.

(2) A taut string of length 20 cms. fastened at both ends is displaced from its position of
equilibrium, by imparting to each of its points an initial velocity given by



V=X in0<x<10
=20-x in10<x < 20,
‘x” being the distance from one end. Determine the displacement at any subsequent time.

(3) Find the solution of the wave equation
&u &u
I A
ot o

corresponding to the triangular initial deflection f(x) = (2k/ ) x when 0< X< £/2
= (2k/0) (L —x) when £/2< x< €,

and initial velocity zero.

(4) A tightly stretched string with fixed end points x = 0 and x = { is initially at rest in its
equilibrium position. If it is set vibrating by giving to each of its points a velocity oy/ ot
= f(x)

at t = 0. Find the displacement y(x,t).

(5) Solve the following boundary value problem of vibration of string

i. y@Op=0
ii.  y,t)=0
oy

iii. (x,0) =x (x — £), 0O< x< L.
ot
iv. y(x0)=x in O0<x<t/2

=L0—x in £/2<x< (.
(6) A tightly stretched string with fixed end points x =0 and x = { is initially in a
position given by y(x,0) = k( sin(rtx/£) — sin( 2ntx/ 0)). If it is released from rest, find the
displacement of ‘y’ at any distance ‘x’ from one end at any time ‘t’.

3.3 Solution of the heat equation

The heat equation is

— =d - (1),
ot ox?

Let u=X(x) . T(t) be the solution of (1), where ‘X’ is a function of ‘x’ alone and ‘T’ is a
function of ‘t” alone.



Substituting these in (1), we get

XT = o?X"T.
XH T!

ie, S — ).
X o’T

b

Now the left side of (2) is a function of ‘x” alone and the right side is a function of ‘t
alone. Since ‘x” and ‘t’ are independent variables, (2) can be true only if each side is
equal to a constant.

XH T!
Therefore, = = k (say).
X o’T
Hence, we get X" —kX=0 and T’ — o?KT = 0. ----mmmmmmmmmv ).

Solving equations (3), we get

(i) when ‘k’ is positive and k = A%, say

X=c ™ + ¢, e ™
22
T =cpe* ™!

(ii) when ‘k’ is negative and k = —A?, say
X =C4 COSAX + Cs5SINAX
22
T=coe "'
(ii1)) when ‘k’ is zero.

X=c;X +cCg
T =¢9

Thus the various possible solutions of the heat equation (1) are

22
U=@ie™ +ce™ce**t s (4)
22
U =(CaCOSAX + CsSINAX) Cge ™ “ * ' mememev (5)

Uu=(rx+cgcCy e (6)



Of these three solutions, we have to choose that solution which suits the physical
nature of the problem and the given boundary conditions. As we are dealing with
problems on heat flow, u(x,t) must be a transient solution such that ‘u’ is to decrease with
the increase of time ‘t’.

Therefore, the solution given by (5),

22

U = (C4 COSAX + CssSinAx)cge * ™!

is the only suitable solution of the heat equation.

Illustrative Examples
Example 7

A rod <0’ cm with insulated lateral surface is initially at temperature f(x) at an
inner point of distance x cm from one end. If both the ends are kept at zero temperature,

find the temperature at any point of the rod at any subsequent time.

v

Let the equation for the conduction of heat be
au &u

ot ox?
The boundary conditions are
() u(t) =0, Vt>0
(i) u(t) =0, Vt>0
@) ux0)=f(x),0<x<¢

The solution of equation (1) is given by

2 2
u(x,t)=(Acosix +Bsinix)e ** ' e )



Applying condition (i) in (2), we have

0=Ae ** t which gives A=0
LU =Bsimxe P 3)
22
Applying condition (ii) in the above equation, we get 0 = BsinAle ™ !
nm
i.e, M=nm Oor A= ------m-- (n is an integer)
¢
-2l
NIX ~ eeeeeeen t
5u (1) = B sin -----—-- e 0
e
Thus the most general solution is
22
o NAX ~ mememememeeee t
u(x,t)= X Bpsin --------- e S — ()
n=1
e
By condition (iii),
0 nnx
u(x,0) = Zl By sin ----------- =f (x).
n=

L

The LHS series is the half range Fourier sine series of the RHS function.

2 nmX

. By = --mme- f (X) sin -------- dx
¢ e

Substituting in (4), we get the temperature function

-n’na

0 2 4 nmX 171 G —— t

uxt)= % p--- [ £ (x) sin -------- dx | sin --------- e (2
n= E 0 E E

Example 8

ou Rl
The equation for the conduction of heat along a bar of length € is ------ = 2 —mmmeee

ot ox?



neglecting radiation. Find an expression for u, if the ends of the bar are maintained at
zero temperature and if, initially, the temperature is T at the centre of the bar and falls
uniformly to

Zero at its ends.

X P
A B
Let u be the temperature at P, at a distance x from the end A at time t.
au &u
The temperature function u (x,t) is given by the equation ------ S G — et (1)
ot ox?

The boundary conditions are

(i) u(@,) =0, vt> 0.

@iy u(t) =0, VvVt >0.

u(x,0) * A(L/2,T)
T
B(L,0)
0(0,0) L ) X
2Tx L
u(x,0) = ---------- , for 0 <x< -----
e 2
2T e
= ememeeeee- (L -x), for----- <x<tl
e 2
The solution of (1) is of the form
2 2
u(xt) =(Acosix +Bsinax)e >t e (2)

Applying conditions (i) and (ii) in (2), we get



A=0&\=-----
e
22
NAX ~ e—emem—m—e-- t
Sou(x,t) =Bsin --------- e 2
L
Thus the most general solution is
N2l
o0 nmx 0 mmemmmeeeee- t
u(x,t)= % Bpsin --------- S o p—— 3)

2 ¢ N7X
Here B, = ------ [u(x,0) sin -------- dx
¢ ° §
2 2 2TX nmX ¢ 2T NnmX
ie, By = - | Sin -------- N — (£-X) Sin =------- dx
e J°% ¢ § R §
nmx nmx
- COS --------- - C0S =---m-mmn--
4T ) i» L ¢ L
—JR— | I | [ — AN ) e ———
EZ 0 nm/¢ 02 nm/¢
r nmX nmX
- COS --------- -Sin -----m---- €2
4T L L
R S [C0] E— — (1) |- +
e nm/ n’n/0?



L L
(£-X) =mmmmmmmmmmmmeees e G B
nm/t nm?/0?
€2
4T - 02 nm ¢ nm ¢? nm ? nm
il SRR COS ------- + --- sin + COS ----- Fommnman sin ------
0 2nm 2 n°n’ 2 2nm 2 n* 2
4T 202 nn
Rl s sin -------
0 n’n? 2
8T nm
Bn = --------- Sin-------
n’m? 2
Hence the solution is
-n’na?
w 8T nm NIX - t
uXt) =2 --------- sin --- sin e 2
=l el 2 e
or 2 2 2
. 8T nm NmX nna t
uxt) =2 - - sin sin - e p2
n=13,5. n2n2 2 0
or
-a? (2n-1)n?
_________________ t
8T . (1™ (2n-1)nx I%:
u (X,t) = --------- Y - SiNn --------------- e
e ™ (2n-1)? )

Steady - state conditions and zero boundary conditions
Example 9

A rod of length ‘€’ has its ends A and B kept at 0°C and 100°C until steady state
conditions prevails. If the temperature at B is reduced suddenly to 0°C and kept so while
that of A is maintained, find the temperature u(x,t) at a distance x from A and at time ‘t’.

The heat-equation is given by



ot ox?
Prior to the temperature change at the end B, when t = 0, the heat flow was
independent of time (steady state condition).

When the temperature u depends only on x, equation(1) reduces to

ol
________ = 0
OX?
Its general solutionis u=ax+b ~  ----eemeeeee- 2)
100
Sinceu=0 for x =0 & u= 100 for x = {, therefore (2) givesb=0 & a = ---------
L
100
U (x,0) = - X, for 0 <x<¢
L

Hence the boundary conditions are

(u(b =0, v t>0

(iHu(tt =0, v t>0
100x

GDITCY) T E— foro<x<
¢

The solution of (1) is of the form
U(Xt) =(Acoshx+Bsinax) et (3)
Using, conditions (i) and (ii) in (3), we get

nm
A=0&) = —memen

Sou(X,t) = B sin —mmmmmme- e 2

Thus the most general solution is

2 2 2
-nTmol



o0 nmx - t
u@xt)= X By sin ------m- e 0
n=1 [
Applying (iii) in (4), we get
© nmx
u (x,0) = X By sin ---------
n=1 [
100x o nmx
ie, ----—-- = X Bpsin ---------
0 = e
2 £ 100x nmX
=>B, =--—-- | $in ------- dx
£ 0 L L
7 nnx
- COS --------
200 ¢ L
= eeeeee- |G | e —
¢ 0 nm
\_ e
e nIX T\
- COS ----------
200 e
= e <x) -------------------
? nm
NN/
200 [ —¢?
= e - Cos N
¢ nm

Hence the solution is

-1

--------- @
7o
-sin —----me---
10
________ o
NN




» 200 (-1)"™* nmX -n*rfol t
uxt) = 2 e Sin ---------- e
n=1
nm L

Example 10

Arod, 30 c.m long, has its ends A and B kept at 20°C and 80°C respectively, until
steady state conditions prevail. The temperature at each end is then suddenly reduced to
0°C and kept so. Find the resulting temperature function u (x,t) taking x = 0 at A.

The one dimensional heat flow equation is given by

au &u
------- SV — REN—)
ot ox?
ou
In steady-state, ------ = 0.
ot
&u
Now, equation (1) reduces to --------- SN o [ —— )
ox?
Solving (2), weget u=ax+b = ceemeemmeeee- ()

The initial conditions, in steady — state, are

u=20,when x=0
u=380,when x=30

Therefore, (3) gives b =20,a=2.
SU(X)=2x+20 0 e 4)

Hence the boundary conditions are

(i) u@t) =0, V1t>0

@i u@Oor=0, Vit>0

@iii))  u(x,0) =2x+20,for0<x<30
The solution of equation (1) is given by

2

2
u (x,t) = (A cosh X + BsinAx) e * * ' commmmms (5)

Applying conditions (i) and (ii), we get



nm

A=0,A=------ , where ‘n’ is an integer
30
-o%n’n?
1" S— t
Lu(xt=Bsin --- e --- 900
---------- ---- (6)
30

The most general solution is

-a2n2n2
o N7X ----------- t
LU ) =2 Bysin g - 900 e (7)
n=1 30
Applying (iii) in (7), we get
o nnx
u(x,0) =2 B,sin ------- =2x +20, 0 <x < 30.
n=1
30
2 30 nmXx
. By = [ (2x+20) sin ------ dx
30 ° 30
a nmxX T\
- COS ----------
1 3 30
QR ISl Y R e —
15 0 nm
~ 0 _J
e I
/ n7mx \ / n7mx \ 30
- COS ---------- - sin - ------
1 30 30
= - < (2x+20) | ---=-=-=-===m=m-m-- —(2) |- >
15 nm n’n®
N\ o T N T )




1 { —2400 cosnn 600 }

40
I —— {1-4(-1)"}
nm

Hence, the required solution is

U= X ----- {1-4(-1)" } sin —e - 900
n=1 nr 30

Steady-state conditions and non-zero boundary conditions
Example 11

The ends A and B of a rod 30cm. long have their temperatures kept at 20°C and
80°C, until steady—state conditions prevail. The temperature of the end B is suddenly
reduced to 60°C and kept so while the end A is raised to 40°C. Find the temperature
distribution in the rod after time t.

Let the equation for the heat- flow be

au &u
------- S — SEN—)
ot x>
du
In steady-state, equation (1) reduces to -------- =0.
x>
Solving,weget u=ax+b = e (2

The initial conditions, in steady—state, are

u=20, whenx= 0
u =80, when x = 30

From (2), b=20 &a =2.

Thus the temperature function in steady-state is



ux)=2x+20 e (3)

Hence the boundary conditions in the transient—state are
Q) u(@,t)=40, Vv t>0
(i)  u(@304t) =60, Vt>0
@iii)  u(x,0) =2x+20,for0<x<30

we break up the required funciton u (x,t) into two parts and write
U =usX)+u(xt) s ()

where us (X) is a solution of (1), involving x only and satisfying the boundary
condition (i) and (ii). u; (x,t) is then a function defined by (4) satisfying (1).

Thus us(x) is a steady state solution of (1) and u¢(x,t) may therefore be regarded
as a transient solution which decreases with increase of t.

To find us(x)
we have to solve the equation --------- =0

Solving, we get us(x) =ax+b  —eemeeeeeee- (5)

Here us(0) = 40, us(30) = 60.
Using the above conditions, we get b = 40, a = 2/3.

2

SoUg(X) = -mmee- X+40 s (6)
3
To find uy(x,t)

U ( X,t) = u (X,t) — us (X)
Now putting x =0 and x = 30 in (4), we have
ur (0) =u(0t) —us(0) = 4040=0
and u¢ (30,t) =u (30,t) — us (30) = 60-60=0
Also u; (x,0) =u (x,0) — us (X)

2
=2X + 20 — ------ x— 40
3
4
= e X —20



Hence the boundary conditions relative to the transient solution u; (x,t) are

u(0) =0 e (iv)
WEOH=0 e v)
and U (X,0) = (4/3) X — 20 === (vi)
We have -o*A%t
u(xt) = (Acosix+ € Bsinix)
-------------- 7)

Using condition (iv) and (v) in (7), we get

nm
N R e —
30

Hence equation (7) becomes

-a’n’n?
). CE—— t
Uy (x,t) = B sin ----€_ ---- 900
30
The most general solution of (1) is
o2l
o nmx i
U(X,t) = 2 Bpsin -—--g  --- 900
------------------ (8)
i 30
Using condition (vi) ,
o nnX
U (X,0) =2 Bysin ------- = (4/3) x-20, 0 < x < 30.
n=1
30
2 30 nmx
By = -e- [ {(4/3) x-20} sin -------- dx

30 ©° 30



- COS ---------~ - SiN ==mm-mme
1 < 4 30 4 30
= e || - X=20|| --=mmmmmmmmmm- — |- | | ~mmmmm -
15 3 nm 3 n2m2
N _/ N oy
30 900

- 15 nm nm
- 40
= - {1+cosnn}
nm
—-40{1+ (-l)”}
BN = - o
nw
orB, =0, whennisodd
-80
------ , when n is even
nm a2
e t
® -80 NTX 900
R | I N sin - o -
n=2,4,6, ... N=x 30
SoUu (1) = us (X) + ug (X,)
22
2 80 1 NTX%--------- t
ie, u (xt) = ------ X + 40 — ------ > - sin--g - 900

3 n=2,46,. n 30



Exercises

(1) Solve du/ét = o® (6%u /6x?) subject to the boundary conditions u(0,t) = 0,
u(l,t) =0, u(x,0) = x, O< x< I.

(2) Find the solution to the equation du/at = a? (6°u /6x?) that satisfies the conditions
i, U0 =0,
i, ul=0,vt>0,
ii.  u(x,00= x for O<x<1/2.
= |—x forl/2< x<.
(3) Solve the equation du/ét = o (9°u /6x?) subject to the boundary conditions
i, U0 =0,
i, ul)=0vt>0,
. u(x,0) = kx(I-x),k>0,0<x <1,

(4) A rod oflength ‘I’ has its ends A and B kept at 0°C and 120° C respectively until

steady state conditions prevail. If the temperature at Bis reduced to 0° C and kept so while
that of A is maintained, find the temperature distribution in the rod.

(5) A rod of length ‘I’ has its ends A and B kept at 0°C and 120° C respectively until
steady state conditions prevail. If the temperature at Bis reduced to 0° C and kept so while
10° C and at the same instant that at A is suddenly raised to 50° C. Find the temperature
distribution in the rod after time ‘t’.

(6) A rod of length ‘I’ has its ends A and B kept at 0°C and 100° C respectively until
steady state conditions prevail. If the temperature of A is suddenly raised to 50° C and
that of B to

150° C, find the temperature distribution at the point of the rod and at any time.

(7) Arod of length 10 cm. has the ends A and B kept at temperatures 30° C and 100° C,
respectively until the steady state conditions prevail. After some time, the temperature at
A is lowered to 20°C and that of B to 40° C, and then these temperatures are maintained.
Find the subsequent temperature distribution.

(8) The two ends A and B of a rod of length 20 cm. have the temperature at 30° C and
80° C respectively until th steady state conditions prevail. Then the temperatures at the
ends A and B are changed to 40° C and 60° C respectively. Find u(x,t).

(9) A bar 100 cm. long, with insulated sides has its ends kept at 0° C and 100° C until
steady state condition prevail. The two ends are then suddenly insulated and kept so. Find
the temperature distribution



(10) Solve the equation du/ét = o (6°u /6x?) subject to the conditions (i) ‘u’ is not
infinite
ast oo (ii)u=0forx=0andx=m, V't (iii) u=nx—x*fort=0in (0, n).

3.4 Solution of Laplace’s equation(Two dimentional heat equation)

The Laplace equation is
d2u d%u
- 4 _ = 0
ox? oy°

Let u=X(x). Y(y) be the solution of (1), where ‘X’ is a function of ‘x’ alone and ‘Y” is
a function of ‘y’ alone.

&u &u
Then — =X"Y and — =.XY"

x> oy

Substituting in (1), we have

X"Y + XY” =0

XH YN

Now the left side of (2) is a function of ‘x” alone and the right side is a function of ‘t’
alone. Since ‘x” and ‘t’ are independent variables, (2) can be true only if each side is
equal to a constant.

X" Y"
Therefore, — =——— = k(say).
X Y
Hence, we get X" —kX =0 and Y"+ kY =0. -------------- (3).

Solving equations (3), we get

(i) when ‘k’ is positive and k = A%, say
X=cre™ + ¢, e ™
Y =C3COSAYy + C4SiNAy

(ii) when ‘k’ is negative and k = —A?, say
X =C5 COSAX + Cg SIiNAX
Y=c,e™ +cge ™



(iii) when ‘k’ is zero.
X=C9 X +Cyg
Y =C11 X+ Cp2

Thus the various possible solutions of (1) are

U =(cre™ + cy e ™) (CaCoShy + CqSinLy) --mmmmmmmmms (4)
U = (Cs COSAX + CgSiNAX) (C7 €™ + Cg €M)  —moommmee- (5)
U= (Co X+cCip) (CuX+C2) e (6)

Of these three solutions, we have to choose that solution which suits the physical
nature of the problem and the given boundary conditions.

Example 12

An infinitely long uniform plate is bounded by two parallel edges x =0 & x =
and an end at right angles to them. The breadth of this edge y = 0 is £ and this edge is
maintained at a temperature f (x). All the other 3 edges are at temperature zero. Find the
steady state temperature at any interior point of the plate.

Solution
Let u (x,y) be the temperature at any point x,y of the plate.
&u &u
Also u (x,y) satisfies the equation -------- + mmmmnenee =0 e (1)
ox? oy
Let the solution of equation (1) be
u(x,y) = (A cos Ax + Bsinix) (Ce™ +De™) el (2)
YN y=o
AVAVAWV/
x=0 x=10
0<x<t
O<y<ow
F 7
0 |y=0 X
f(x)
The boundary conditions are
M u(,y)=0, for 0<y<ow
(i)u (L, y)=0, forO<y<ow

(i) u (x, ©) =0, for 0<x<¢
(iVyu(x,0)=f(x), forO<x<¢



Using condition (i), we get
0=A (Ce™ + De™)

ie, A=0

.. Equation (2) becomes,

u(xy)=Bsinx (Ce¥+De™) s (3)
Using cndition (ii), we get
nm
e ——
L
N7 (nmy/€)  (-nmy/t)
Therefore,  u (x,y) = B sin --------- {Ce + De S — ()

nmx (- nmy/0)

o0 nmx (- nmy/t)
u (x,y) = X By Sin ------- e (5)
n=1 L

Using condition (iv), we get

o0 nmx

f(x)=2XB,Sin - (6)
n=1 10
The RHS of equation (6) is a half — range Fourier sine series of the LHS function.



Using (7) in (5), we get the required solution.

Example 13

A rectangular plate with an insulated surface is 8 cm. wide and so long compared
to its width that it may be considered as an infinite plate. If the temperature along short
edge y = 0is u(x,0) =100 sin (nx/8), 0 < x < 8, while two long edges x =0 & x =8 as
well as the other short edges are kept at 0°C. Find the steady state temperature at any
point of the plate.
Solution

The two dimensional heat equation is given by

u &u
e =0 e (1)

ox? oy°
The solution of equation (1) be

u(xy) = (Acosix +Bsinix) (Ce™ +De™) e @)

The boundary conditions are
(MHu(,y) =0, for 0<y<ow
(ihu(8,y) =0, for0<y<w
(iii) u (x, ©) =0, for 0<x<8
(iv) u (x, 0) = 100 Sin (nx/8,) for 0 <x <8

Using conditions (i), & (ii), we get

nm
A=0,A -
8
nmX (nmy /8) (-nmty / 8)
~u(xy) = Bsin -------- [Ce + De ]
8
[ (nmy / 8) (-nmy / 8? nmx
= |B.e + Dqe Sin ---------- , Wwhere B; =BC
8 D, =BD
The most general soln is
o0 (nmty / 8) (-nmy /8 nmX
uxy =2 EBne + Dne ﬂ SIN =-mmmmmmmm e (3)
n=1 8

Using condition (iii), we get B,=0.



0 (-nmy/8) nnX

Hence,u (x,y) =2 Dge SiN -------- s (4)
n=1 8

Using condition (iv), we get

19, 0 nmx
100 sin --------- =Y Dy sin---------
8 n=1 8
X X 21X 31X
i.e, 100 sin --------- = Dy Sin —------ + Dy SiN —-nmemee 4 Ds SN —womeeeee .

Comparing like coefficients on both sides, we get

D1:100, D2:D3:.... =0
Substituting in (4), we get
(-my/8)
u(x,y)=100e sin (nx / 8)

Example 14

A rectangular plate with an insulated surface 10 ¢.m wide & so long compared to
its width that it may considered as an infinite plate. If the temperature at the short edge y
=0 isgiven by
u (x,0) =20 x, 0<x <5
20 (10-x), 5<x<10
and all the other 3 edges are kept at temperature 0°C. Find the steady state temperature at
any point of the plate.

Solution
The temperature function u (x,y) is given by the equation
&u &u
---------- + —mmmmeee- =0 el 1))
oxX° oy°

The solution is
u(xy) =(Acosix +Bsinix) (Ce™ +De™)  —oommeemeeeees 2)



The boundary conditions are

Hu@y =0 for 0<y<ow
(i) u(10,y) =0, for 0<y<ow
(iii) u (x, ©) =0, for 0< x <10
(iv)u (x,0) =] 20 x, if 0<x<5

20 (10-x), if 5<x<10
Using conditions (i), (ii), we get
nm
A=0&MA = —---m--
10

..Equation (2) becomes

nmX (nmy / 10) (- nmy/10)
u(x,y) =Bsin ------ Ce + De

10

sin ---------

[ (nmy / 10) (- nny/lO)J nmX where B; = BC,

B.e + Dqe

.. The most general solution is

o [ (nmy / 10) (- nnylloﬂ nmx
B

uxy) =2 né + Dye Sin ---------
n=1 10
Using condition (iii), we get B,=0.

.. Equation (3) becomes

o0 (- nty/10) nmx

uxy)=2 Dne T e — (4)
n=1 10
Using condition (iv), we get

D, =BD



e} nmX

ux,0)=> D, SiN---— (5)
n=1 10

nmX nmX
5 - C0S ---17~ - Sin -y
= - -< (20X) | -------==-m-mmm- —(20) ------meeee--
10 nmw n’mn?

B nmx nmx
/-cos \ / sin \
10 10
+ | [20 (10-X)] |-----mmmmmemmmee ) R
nm n2TE2
- \_ 10 ) \_ 100 /
nm
800 sin --------
2
e, Dy =~
n’n?
Substituting in (4) we get,
nm
800 sin --------
o 2 (-nmy / 10) Nmx
U (X,y) =2 —mmmmmmmmmmmmmmmmm e e T —
n=1 n21_52 10

Example 15
A rectangular plate is bounded by the linesx=0,x=a,y=0&y=Dh.

The edge temperatures are u (0,y) =0, u (x,b) =0, u(a,y) =0 &

o




u (x,0) =5sin (5nx / a) + 3 sin (3nx / a). Find the steady state temperature distribution at
any point of the plate.

The temperature function u (x,y) satisfies the equation

Let the solution of equation (1) be
U (X,y) = (A cosAxX + BsinAx) (Ce™ + De ™) —-eeeeeee- @)

The boundary conditions are
Hu(@y) =0, forO<y<b
(iu(ay) =0, forO<y<b
@iii)u (x,b) =0, for0O<x<a
(iv) u (x,0) =5sin (5nx /a) + 3sin (3nx /a), for0<x<a.

yl y=»0b

@] y =0 X

Using conditions (i), (ii), we get
nm
A=0, A= ----mmm-

nmX ((nny/a) (-nmy / a)
~u(x,y) =B sin -------- Ce + De
.
e
nmX (nmy / a) (-nmy / a)
=sin -------- B.e + Dqe

-
The most general solution’is

© (nmy / a) (-nmy / a) nmX
u(xy) =2 |[Bne + Dpe SiN -----m-m-mm —meee- (3)
1

n=



Using condition (iii) we get

o (nmh / a) (-nmth / a) nmx
0 = X [Bge + Dy Y| —
n=1
a
(nmth / a) (-nmb / a)
==> B,e + Dpe =0
e (nmb / @)
Dn = Bn ________________ = - Bne(znﬂ:b/a)
_e (nmb/2)

Substituting in (3), we get

0 nmX
u (le) e z Bne (nny/a) - Bne (Znﬂ:b/a) e ('nﬂ:y/a) Sln _____________
n=1
a
©  Bn nmx
= [e(nny/a) e(-nnb/a) —e (2nmb / a) e (-nmy / a) e(-nnb/a)} s p—
n=1 e(-nrsb)/a a

2 Bn e(nar (y-b)/a) _ e(—nn (y-b)/a) NmX

= sin
p(nmb /) 2 a

2B, nx (y-b) nmX
I et sin h --------=------ Sin -----------

p(nmb /) a a

o nx (y —b) nmX
ie, u(xy)=2 C, sinh ---------- SiN =----- - 4)
n=1
a a
Using condition (iv), we get
SmX 31X % nx (-b) nmX
5sin -------- + 3 sin --------- =2 Cysinh------- sin ------
a a n=1 a a
5nx 31X 0 nnb NmX
ie, 5sin -------- +3sin --------- =2 -Cpsinh--—---- sin -------

a a n=1 a a



B5nx 3nx ntb X 27th 21X

ie, 5sin ------ +3sin ------- = - C; sinh ------ sin ------ - Cysin h------ sin ------ - ...

a a a a a a

Comparing the like coefficients on both sides, we get

3nb
- Czsinh ------------ =3 &
a
5nb
- Cssinh ------------ =5, Ci=C=C4=C=...=0
a
-3 -5
==> C3= - & Cg= -
sinh (37 /a) sinh(5ntb/ a)
Substituting in (4), we get
3 3n (y-b) 3mX
uxy) = - - sinh  ------m---- Sin ----------
sinh(3ntb / a) a a
5 5n (y-b) 5nx
— oo sin h ---------- Sin -----------
sinh(5ntb / a) a a
3 3n (b-y) 3nx
e, uxy)= -------m- sinh -----m-m--- sin ----------
sinh(3nb / a) a a
5 5n (b-y) 5mx
I sin h ---- sin
sinh(5ntb / a) a a
Exercises
&u &u
(1) Solve the Laplace equation — + —— = 0, subject to the conditions
oX° e

i. uOy)=0forO<y<b



ii. u(ay)=0forO<y<hb

. ux,p)=0for0<x<a

iv.  u(x,0) = sin(nx/a) ,0<x <a.
(2) Find the steady temperature distribution at points in a rectangular plate with insulated
faces and the edges of the plate being the lines x =0, x =a, y =0 and y = b. When three
of the edges are kept at temperature zero and the fourth at a fixed temperature o° C.

&u &u
(3) Solve the Laplace equation — + — = 0, which satisfies the conditions
ox? e
u(0,y) = u(l,y) = u(x,0) =0 and u(x,a) = sin(nmx/1).
&u &u
(4) Solve the Laplace equation — + — = 0, which satisfies the conditions
x> oy
u(0,y) = u(a,y) = u(x,p) =0and u(x,0) = x (a—x).
du du
(5) Solve the Laplace equation — + —— = 0, subject to the conditions
x> oy
i. ul0y)=0 0<y<l ii. u(lLy)=0,0<y<I

. u(x,00=0,0<x<1 iv. u(xl)= f(x),0<x<|

(6) A square plate is bounded by the linesx =0,y =0, x =20 and y = 20. Its faces are
insulated.

The temperature along the upper horizontal edge is given by u(x,0) = x (20 — x), when 0 <
x <20,

while other three edges are kept at 0° C. Find the steady state temperature in the plate.

(7) An infinite long plate is bounded plate by two parallel edges and an end at right
angles to them.The breadth is ©. This end is maintained at a constant temperature ‘uo’ at
all points and the other edges are at zero temperature. Find the steady state temperature at
any point (x,y) of the plate.

(8) An infinitely long uniform plate is bounded by two parallel edges x =0 and x = |, and
an end at right angles to them. The breadth of this edge y = 0 is ‘I’ and is maintained at a
temperature f(x). All the other three edges are at temperature zero. Find the steady state
temperature at any interior point of the plate.

(9) A rectangular plate with insulated surface is 8 cm. wide and so long compared to its
width that it may be considered infinite in length without introducing an appreciable
error. If the temperature along one short edge y = 0 is given by u(x,0) = 100 sin(nx/8), 0
< X < 8, while the two long edges x = 0 and x = 8 as well as the other short edge are kept
at 0° C, show that the steady state temperature at any point of the plane is given by u(x,y)
=100 e™/8 sin 7x/8 .



(10) A rectangular plate with insulated surface is 10 cm. wide and so long compared to
its width that it may be considered infinite length. If the temperature along short edge y =
0 is given

u(x,0) = 8 sin(mtx,/10) when 0 < x < 10, while the two long edges x = 0 and x = 10 as
well as the other short edge are kept at 0° C, find the steady state temperature distribution

u(x.y).



UNIT-IV

FOURIER TRANSFORMS

4.1 Introduction

This unit starts with integral transforms and presents three well-known integral
transforms, namely, Complex Fourier transform, Fourier sine transform, Fourier cosine
transform and their inverse transforms. The concept of Fourier transforms will be
introduced after deriving the Fourier Integral Theorem. The various properties of these
transforms and many solved examples are provided in this chapter. Moreover, the
applications of Fourier Transforms in partial differential equations are many and are not
included here because it is a wide area and beyond the scope of the book.

4.2 Integral Transforms

The integral transform f(s) of a function f(x) is defined by
~ b
f(s) = ;{ f(x) K(s,x) dx,

if the integral exists and is denoted by I{f(x)}. Here, K(s,x) is called the kernel of the
transform. The kernel is a known function of ‘s’ and ‘x’. The function f(x) is called the

inverse transform

of f(s). By properly selecting the kernel in the definition of general integral transform,
we get various integral transforms.

The following are some of the well-known transforms:

(i) Laplace Transform
L{f)} =F f(x) e_o dx
0

(i1) Fourier Transform

1 .
F{fx)} =—— | f(x) ™ dx
\2r

(iii) Mellin Transform

0

M{f(x)} = OI f(x) x ** dx



(iv) Hankel Transform

[ee]

Ha{f(x)} = Of f(X) X Jn(sX) dX,

where Ju(sx) is the Bessel function of the first kind and order ‘n’.

4.3 FOURIER INTEGRAL THEOREM
If f(x) is defined in the interval (-£,£), and the following conditions

(1) f(x) satisfies the Dirichlet’s conditions in every interval (-£,0),

(i) | |f(x)|dx converges, i.e. f(x) is absolutely integrable in (-o0,c0)

are true, then f(x) =(1/ n)}o Ofof(t) cosA(t-x) dt dA.
0 =00

Consider a function f(x) which satisfies the Dirichlet’s conditions in every interval (-(,0)
so that, we have

QO nmx nmx
f(x) = ----- +2 an COS---- +bp sin----| ----m- 1)
2 n=1 L L
1 L
where ay = ----- [ £(t) dt
L -t
1 ¢
an= - [ £(t) cos (nmt / € ) dt
L-¢
1 ¢
and  by= - [ f(t) sin (nmt/ ) dt
t -¢

Substituting the values of ap, a,and b, in (1), we get

1 4 1 o ¢ nr(t — X)
fx) = - [ftydt + - X [ f(t) cos ----------- d - (2)
2¢ -L ¢ n=1 -¢ ¢



Since, 1 { 1 ¢
----- [f@)dt| < - [|f@®)dt,
2¢ ¢ 2¢ -¢

then by assumption (ii), the first term on the right side of (2) approaches zero as £ — .
As ¢ — oo, the second term on the right side of (2) becomes

1 o o nrn(t — X)
tim - Y | f(t) cos --------m-- dt
{t—>00 ¢ n=1 - T4
1 o o
= lim - Y AL [ f(t) cos {n AL (t—x)}dt,on taking (n/ ) =

AA.
AL—0 wm n=1 °~

By the definition of integral as the limit of sum and (nw/ € ) = as £ — oo, the second
term of (2) takes the form

1 0

_

0

T

T f(t) cosA (t—x)dtdn,

Hence as £ — oo, (2) becomes
1 o0 o0
fx) = - | [ f(t) cosh (t—x)dtdr ----mmmm- (3)
T 0"
which is known as the Fourier integral of f(x).

Note:

When f(x) satisfies the conditions stated above, equation (3) holds good at a point
of continuity. But at a point of discontinuity, the value of the integral is (1/2) [f(x+0) +
f(x-0)] as in the case of Fourier series.

Fourier sine and cosine Integrals
The Fourier integral of f(x) is given by

1 o0 o0
f(x) = - | [ f(t) cosh (t—x) dtdx

T 0

1 oo o0
= If(t){coskt.coskx + sinAt. sinAx } dt du
T 07"

1 - o 1 o0



= - | cosix | f(t) cosrtdt dr +——] sinix | f(t) sinit dt di --—--(4)

T 0 * T 0

When f(x) is an odd function, f(t) cosAt is odd while f(t) sinAt is even. Then the first
integral of (4) vanishes and, we get

2 o0 0
f(x) = — [ sinAx[ f(t) simitdtdr - (5)
T o "
which is known as the Fourier sine integral.

Similarly, when f(x) is an even function, (4) takes the form

2 o
f(x) = — | cosax| f(t) cosatdtdr ------- (6)
T o e

which is known as the Fourier cosine integral.

Complex form of Fourier Integrals

The Fourier integral of f(x) is given by

1 o0 oo
f(x) = - | [ f(t) cosA(t—x)dtdn
T 0
1 o0 o0
= - f(t)[ [ cos A(t—x) dx]dt
T ” 0

Since cos A(t—x) is an even function of A, we have by the property of definite integrals

1 . .
fx) = - [ f(t) [(1/2)Icos At = X) dx]dt
l o0 oo
ie, f(x) = - [ [ f(t) cosh(t—x)dtdr -------- 7)
2n 7"

Similarly, since sin A(t —x) is an odd function of A, we have



0 = — [ ] ft) sini(t—x)dtdr --------- (8)
2n 77
Multiplying (8) by ‘i * and adding to (7), we get

1 oo o0
fx) = - [ [ f@) ™ ¥dtdn, - 9)
2n 77
which is the complex form of the Fourier integral.
4.4 Fourier Transforms and its properties
Fourier Transform
We know that the complex form of Fourier integral is
1 0 o8] )
fx) = —— [ | f(t) e*™ dt d.

2n
Replacing A by s, we get

1 w w
f(x) =—— [e™ds | f(t)e™dt.
2 "
It follows that if
1 o
FGs) =—— [ f(t) e*'dt -----mmmmmmmm- (1)
\N2n
1 w _
Then, f(x) =—— | F(s)e™ds --emmeemmeeee- )
\2r

The function F(s), defined by (1), is called the Fourier Transform of f(x). The function
f(x), as given by (2), is called the inverse Fourier Transform of F(s). The equation (2)
is also referred to as the inversion formula.

Properties of Fourier Transforms
(1) Linearity Property

If F(s)and G(s) are Fourier Transforms of f(x) and g(x) respectively, then



F{af(x) + bg(x)} = aF(s) + bG(s),

where a and b are constants.

1 w
We have FGs)=—— [ ef(x)dx
2 %
1 o
Gi)=—— | e™g(x)dx
2n - ©
Therefore,
1 o
F{laf(x) +bgxX)}= — [ e {a f(x) + bg(x)}dx
21 -
1 © 1 o
= a [ e™fx)dx + b —— [ e g(x)dx
21 - oo 21 - o0

a F(s) + bG(s)

i.e, F{af(x) + bg(x)} = a F(s) + bG(s)

(2) Shifting Property
Q) If F(s) is the complex Fourier Transform of f(x), then

F{f(x-a)} = "2 F(s).

1 o
We have HO i - (PO X ) G —— (i)
21 -
1 0
Now, F{f(x-a)} = —— [ f(x-a) dx
21 -
Putting x-a=t, we have
1 o
F{f(x-a)} = —— "9 (1) dt.
21 -
1 o
=e® —— [ f(t)dt.

21 -



= e F(s). (by (i)).

(ii) If F(s) is the complex Fourier Transform of f(x), then

F{e™ f(x) } = F(s+a).

1 0
We have FGs)=— e f(x)dx -----mmm--
21 -
' 1 ©
Now, F{e™ f(x)} = [ " e f(x) dx.
21 -
1 o
= [ "% f(x) dx .
21 -0
= F(s+a) by (i) .

(3) Change of scale property
If F(s) is the complex Fourier transform of f(x), then

F{f(ax)} =1/a F(s/a), a # 0.

1 0
We have O A (N —
21 - o0
1 ©
Now, F{fax)} =~ [ f(ax) dx.
21m -0

Put ax =t, sothat dx = dt/a.

1 0
SF{f@)} = 7 [e™ f(t) dia.

21T -
1 1 o
=7 [P fr) dt.
a \2n -

1



= — . F(sla). (by ().
a

(4) Modulation theorem.
If F(s) is the complex Fourier transform of f(x),
Then F{f(x) cosax} = Y2{F(s+a) + F(s-a)}.

1 o
We have F(s) =——  [e™f(x) dx

\2n - oo

1 o0
Now, F{f(x) cosax} =—— [ e"* .f(x) cosax. dx.
21 - o0

1 0 eiax + e-iax
= —— Je®™ f(x) ——— dx.

21 - oo 2

1 1 oo 1 o
= —<—— J () dx + —— [ P f(x) dx
2 |\2m - V21 -0

1
= —{F(s+a) + F(s-a)}
2

(5) n" derivative of the Fourier Transform
If F(s) is the complex Fourier Transform of f(x),

Then F{x"f(x)} = (-i)" d"/ds" .F(s).
1 o0

We have O I it (0 N —— (i)
2T -0



Differentiating (i) ‘n’ times w.r.t ‘s’, we get

Fe 1 oo
= — [(@ix)". " f(x) dx
ds" V27 - 0

(i)" o
= — [ f(x)} dx

27 -0
(i)" F{x"f(x)}.
1 d"F(s)

= F{x" f(x)} :
(" ds"
dn

i.e, F{X"f)} = ()" F(s).

ds"

(6) Fourier Transform of the derivatives of a function.
If F(s) isthe complex Fourier Transform of f(x),

Then, F{f‘(x)} =-is F(s) if f(x) >0asx—> +x.

1 0
We have Fs) = —— [e™f(x)dx.
21 -
1 o
Now, F{f‘(x)} = — [e™f‘x)dx.
21 -
1 o
=—— [ dff X)}.
21 -
1 o0

—— [eisx.f(x)]oo-is [ (x). " dx.

\2r -0 -00



1 0

= -is [ € f(x) dx , provided f(x) =0
21 - o0 asX — £ .
=-is F(s).
e, F{f (x)} =-isF(S) ---mmmmmmmmmmmmmmmns (i)

Then the Fourier Transform of " (x),

1 0
e, F{ff"()}=—"— [e™f"(x) dx.
21T -
1 ©
=—— Je¥ difx)}.
21 -0
1 _ %0 _
= E'Sx_f‘(x)TO - [ fex). & (is)dx.
2% -0  -00
1 ©
= -is [ f(x)dx , provided f “(x) =0
21 - oo asX o>+ oo,

=-is F{f ‘(x).}
= (-is).(-is)F(s).  by(i).
= (-is)? . F(s).

ie, F{f“x)} =(-is)® .F(s), Provided f, — 0

asX— =+ .
In general, the Fourier transform of the n™ derivative of f(x) is given by

F{f"(x)} = (-is)" F(s),
provided the first ‘n-1" derivatives vanish as x—+ oo .
Property (7)

X F(s)
If F(s) is the complex Fourier Transform of f(x), then F{i f(x)dx } = =



X
Let g(x)= | f(x)dx.

a
Then, g’(x) =f(x). - (1)
Now f[g‘(x)] = (-is) G(s), by property (6).

= (-is). F{g(x)}

X
= (-is). F{ [ f(x) dx} .
a

X
ie, F{g'(x)} = (-is). F{ [ £(x) dx} .

a

X 1
ie, F{I f(x) dx} =— . F{g'x)}.

a (-is)
1
=— F{f ()} [by(i)]
(-is)
X F(s)
Thus, F{f f(x) dx} ==
a (-is)

Property (8)

If F(s) is the complex Fourier transform of f(x),

Then, F{f(-x)} = E(s), where bar denotes complex conjugate.

Proof
_ 1 0
F(s) = [ f(x)e™dx .
21 -0

Putting x = -t, we get

1 o _
[ f(-t) ™ dt.

V21 -0

F(s) =



= F{f(-)} .
Note: If F{f(x)} = F(s), then
(i) F{R0}=FCs).
(i) F{I0} = F(s).
Example 1

Find the F.T of f(x) defined by

f(x)=0 x<a
=1 a<x<b
=0 x>h.
The F.T of f(x) is given by
1 o
F{f ()} = —— [e™f(x)dx.
21 - o0
1 b
=—— Je™.dx.
21 a
1 eisx b

Example 2

Find the F.T of f(x) =x for |x|<a

=0 for|x|>a.
1 o
F{f ()} = —— [e"™f(x)dx.
\2n -
1 a
= —— [e™.xdx

\2n -a



a
1 Xeisx eisx
\2n is (is)?
-a
1 faeisa eisa ae-isa e-isa
= < - + +
\2m is (is)? is (is)®
~
1 a 1
——X (eisa + e-isa) + —(eisa _ e-isa)
\2n is §?
~
1 -2al 2i
= cossa + sinsa
\2n S §?
2i 1
= .~ [sinsa- as cossa].
s \2n
i [sinsa - as cossa]
= ~(2/n)
SZ
Example 3
Find the F.Tof f(x) =e®, 0<x<1
= 0 otherwise
The F.T of f(x) is given by
1 o
F{f(X)} = [ e (x) dx.
21T - ©
1 1

— J‘eisx. eiax dx.



V2 0

1 1
=—— [e/® gx.
2z 0

1 ei(s+a)x 1

V2 | i(s+a) )0

1

{ei(s+a)x _1}
iN27.(s+a)

{1_ ei(s+a)}
\2m.(s+a)
Example 4
2 2

2 2
Find the F.T of e® X a>0 and hence deduce that the F.T of e* '2is e /2.

The F.T of f(x) is given by

1 0
F{f ()} = —— [e™f(x)dx
21 -

el L fo e o

271 -0
2 2
e-s / 4a 0 )
— J‘ e—[axf(is/2a)] dx .
21 -0
3 2
e—s 4a )
= [e' dt, by putting ax —(is/2a) = t
a2r -
2 2
e—s /4a 0 5

= ., since [e' dt=+rn (using Gamma functions).
aV2n -0



2
To find F{e*'?%}
Puttinga=1/~2 in (1), we get

2/2 2/2
F{e*'}=¢%"".

Note:
If the F.T of f(x) is f(s), the function f(x) is called self-reciprocal. In the above

2

example e * /2

is self-reciprocal under F.T.
Example 5
Find the F.T of
f(x) = 1 for |x|<1.
=0 for |x]>1.

0
Hence evaluate | sinx  dx.

o

X
The F.T of f(x),
1 o
i.e., FHf(X)} =— [ f (x) dx.
\2n -
1 1
=— [e"™.(1).dx.
\2r -1
) 1
1 eISX
\2r is 1
l ele e -is
\2r is
sins
=V(2/n) , 8#0
S

sins
Thus, F{f(x)}= F(s) =V(2/n). , S#0




S
Now by the inversion formula , we get

1 oo '
f(x) = —— [ f(s). ™ .ds.
21 -
0 sins _ 1 for |x|<1
or = [ N@Iny— .e™.ds.=
-00 S 0 for|x]>1.
1 o sins 1 for |x|<1
e, — | e™ . ds.=
T =00 S 0 for|x]>1.
Putting x =0, we get
1 o sins
— ds=1
T -0 S
2 o sins
e, — | ds =1, since the integrand is even.
n 0 S
o sins T
= [ —ds= —
0 S 2
o Sinx T
Hence, | dx=—"
0 X 2

Exercises

(1) Find the Fourier transform of
1  for|x|<a
f(x) =
0 for |x|>a.

(2) Find the Fourier transform of
x?  for|x|<a
f(x) =

0 for |x|>a.



(3) Find the Fourier transform of

a-x*, |x<a
fx) =
0, IX| >a>0.
Hence deduce that oo sint - tcost T
[ dt = —
-00 t2 4

(4) Find the Fourier transform of e and x e™*. Also deduce that

oo  COSXt 1L
[ — dt = — ™
0 al+t? 2a
d
{Hint: F{x.e®} = -i—F{e™}}
ds

4.5 Convolution Theorem and Parseval’s identity.

The convolution of two functions f(x) and g(x) is defined as

1 o
f(x) * g(x) =—— [ f(t). g(x-t). dit.
271 -0

Convolution Theorem for Fourier Transforms.

The Fourier Transform of the convolution of f(x) and g(x) is the product of their
Fourier Transforms,

e, F{f(x) * g(x)} = F{f(x).F{g(x)}.

Proof:

FLF() * 900} = F{(F*g)x)}

1 0
= [ (F*g)(x). €' . dx.
2 - o0
1 o 1 o .
= JQ—— | f(t). g(x-t). dt\ ™ dx .

21t -0 | V271 -0



1 o 1 o0 _
=— [1(1) [ g(x-t). ™ dx .; dt.
27 -0 21 -0

(by changing the order of integration).

1 o
=—  Jf@).F{g(x-H)} dt.
21 -
1 o '
=— [f(t). e"™.G(s). dt. (by shifting property)
21 -
1 o '
= G(s). [ £(0). e dt.
21 -
= F(s).G(s).

Hence, F{f(x) * g(x)} = F{f(x).F{g(xX)}.

Parseval’s identity for Fourier Transforms

If F(s) is the F.T of f(x), then
o0 (e8]
[ F0)PPdx = | |F(s)[® ds.
=00 =00
Proof:

By convolution theorem, we have
F{f(x) * 9(x)} = F(s).G(s)-
Therefore, (f*g) () = F*{F(s).G(s)}.

1 o 1 o
ie, —— [f(h). g(x-). dt=—— [ F(5).G(s).e™ ds. - (1)
21 -0 27 -o0

(by using the inversion formula)
Putting x =0 in (1) , we get

o0 o0

[£(0). g(-t). dt = [F(s).G(s).dS. ---------- (2)



=00 =00

Since (2) is true for all g(t), take g(t) = f(-t) and hence g(-t) = f(t) - 3)
Also, G(s) = F{g()}

= F{f-0}

= F(s) --------mmmmmee- (4) (by the property of F.T).
Using (3) & (4) in (2), we have

[£().f(t). dt = | F(s).F(s).ds.

=00 =00

= [ [ft)? dt= [ |F(s)]? ds.

=00 =00

o0 o0
ie, | [f)?dx= | |F(s)P ds.
-00 -00
Example 6
Find the F.T of f (x) = 1-|x| for |x | < 1.

=0 forx/>1

(o.0]
and hence find the value | sin*t dt.
o t
11 |
Here, F{f(x\)}=—— [ (1- |x| )e"™* dx.
\2n -1
1 1
=—— [ (1-|x)) (cossx + i sinsx) dx.
\2n -1
1 1 i 1
=— J(@-|x)cossx dx.F—  [(1- |x|) sinsx dx.

\2rn -1 \2r -1



1 1
—2[(1-x) cossx dx. by the property of definite integral.

2 0

1

sinsx
N@2Im) [ (1-x) d
afensf
sinsx COSSX
(2/7) (1-x)[ J-(-l) -
S S

1

Using Parseval’s identity, we get

=

i.e,

Setting s/2 = x , we get

Example 7
Find the F.T of f(x) if

0
1- coss
(2/7)
S2
2 o 1
[ (1-coss)?ds. = [(1- |x[)* dx.

T -0 S -1
4 00 1

[ (1-coss)? ds. = 2 [(1- x)* dx = 2/3.
i 0 S 0
16 0

| sin®(s/2) ds. = 2/3.
n O S

16 o sin*x

) 2.dx. = 2/3.
n 0 16x*
o sin*x
= | dx. = n/3.
0o x*



1 for|x|<a
f(x) =
0 for |x>a>0.

o0
Using Parseval’s identity, prove [(sint)?dt. = n/2.
oLt
Here, 1 a
F{f(x)} = —— [e".(1) .dx.
\2n -a

I
3
3 =
—_ (1)
) g
- J
d) QD

sinas

(\2/m)

S

sinas
ie, F(s)=(V2/n) .

Using Parseval’s identity

[ 1f)|2dx = | |F(s)|?ds,

=00

we have
(: N2
a o0 Sinas
[ 1.dx = [(@/n) ds.
-a -00 LS
o (sinas ) 2
2a = (2/m)] |——| ds.
-00 g S D

Setting as =t, we get



o0
@m) | | —| dta
o (1A))

oo (~sint)?
ie., [ | —— dt
-0 t

N\ J
oof sint )2
= 2 [ |——| dt
0 t
N\ J
o ( sint )?
Hence, [ | ——] dt
O N\ t J

4.6 Fourier sine and cosine transforms:

Fourier sine Transform
We know that the Fourier sine integral is

2 o ©
f(x)= — | sinax. | f(t) sinAt dt.dx.
. 0 0

Replacing A by s, we get
2 o0 0
f(x)= — | sinsx< [ f(t) sinst dt.\. ds.
0 0

T

It follows that if

Fs(s) \(2/ 7) (}: f(t) sinst dt..

0

V(2/ ) OI f(x) sinsx dx.

i.e., Fs(s)

then f(x) = ~(@2/ n)OT Fs(s) sinsx ds.



The function F(s), as defined by (1), is known as the Fourier sine transform of f(x).
Also the function f(x), as given by (2),is called the Inverse Fourier sine transform of
Fs(s) .

Fourier cosine transform

Similarly, it follows from the Fourier cosine integral

2 © o
f(x) = — OJ COS AX . [ f(t) cosit dt.d.
T
that if Fe(s) = (2/ 1) Ofw f(x) cossx dx.  —emmemeemee- (3)
then f(x) = V(2/n) OOIOFC(S) SO e - —— (4)

The function F¢(s), as defined by (3), is known as the Fourier cosine transform of
f(x). Also the function f(x), as given by (4),is called the Inverse Fourier cosine
transform of F(s) .

Properties of Fourier sine and cosine Transforms

If Fs(s) and F¢(s) are the Fourier sine and cosine transforms of f(x) respectively, the
following properties and identities are true.

(1) Linearity property
Felaf(x) +bg(x) 1=aF {f(x) } +bF{g(x) }.

and Fc[af(x)+bgX)]=aF.{f(x)}+bF.{g(x)}.
(2) Change of scale property

F.[ f(ax) ] = (1/a) Fs[ s/a].
and  F.[f(ax)]= (1/a) Fc[s/a].
(3) Modulation Theorem
i, Fo[f(x) sinax ] = (1/2) [ F. (s-a) - Fo (s+a)].

.  Fs[ f(x) cosax ] =(1/2) [ Fs (s+a) + Fs (s-a)].



iii.  Fe[ f(x) cosax ] = (1/2) [ F¢ (s+a) + F¢ (s-a) ].

iv. F¢[ f(x)sinax]=(1/2) [ Fs (sta) - Fs (s-a) ].

Proof

The Fourier sine transform of  f(x)sinax is given by

Fs [ f(X) sinax ] =V(2/ n)ofo (f(x) sinax) sinsx dx.

= (1/2) N2/ n)or f(x) [cos(s-a)x — cos(s+a)x] dx.
= (1/2) [ Fc (s-a) — Fc (st+a) ].

Similarly, we can prove the results (ii), (iii) & (iv).

(4) Parseval’s identity

0

OI Fo(s) Ge(s) ds = Ofo f(x) g(x) dx .

0

OJ Fs(s) Gs(s) ds = Ofw f(x) g(x) dx .

0

]

0

Fe(s)

2 gs = f|f(x)|2dx .

0

]

0

Fs9)| 2 ds = f 00| 2 dx .

Proof

[ee]

{) Fe(s) Ge(s) ds :;f Fe(s) [V(2/ 7) T:g(t) cosst dt] ds
:OT g(t) [V(2/ ) ;IOFC(S) cosst ds] dt

= fw g(t) f(t) dt



0

ie., OT Fe(s) Ge(s) ds = OI f(x) g(x) dx .

Similarly, we can prove the second identity and the other identities follow by setting
g(x) = f(x) in the first identity.

Property (5)
If Fs(s) and F(s) are the Fourier sine and cosine transforms of f(x) respectively, then
d
() FL{xf)} =- — Fe(s) .
ds
d
(i) Fe{xf(x)} = - T Fs(s) -
S

Proof
The Fourier cosine transform of f(x),

ie., Fe(s) = V(2/ n) O}o f(x) cossx dx.

Differentiating w.r.t s, we get

d o0
— [ Fs)] = V@/m) | f(x){-xsinsx}dx.
ds 0
= -2/ n) Ojjo(x f(x)) sin sx dx.
= - F{x f(x)}
d
e, F{XfO)}= -— {F(9)}
ds
Similarly, we can prove
d
FelXf0)} = - — {F(s)}
ds

Example 8

Find the Fourier sine and cosine transforms of e® and hence deduce the inversion
formula.

The Fourier sine transform of f(x) is given by

F{fX)} = V(@2/n) OIoof(x) sinsx dx.



Now, Fo{e®™} = @/ n) | e™sinsx dx.
0

[>e}

= 2/ 7) {

e (- asinsx — s cossXx) }

2

al+s?

0

S

= (2/ 1)

Jif a>0
a’+s’
The Fourier cosine transform of f(x) is given by

[>e}

F{fX)} = V(@2/n) OJ f(x) cossx dx.

Now , Fe{e®™} = (@2/n) Of e™cossx dx.
e (- acossx + s sinsx)
= 2/ n)
a’+s° .
a
= \(2/ n) ,if a>0
a’+s°

Example 9

X, for 0<x<1
Find the Fourier cosine transform of f(x) = < 2 —x, for 1<x<2

0, for x>2

The Fourier cosine transform of f(x),

e, F{f(x)}= @2/ lecossx dx. + V(2/ o) I2(2 - X ) cossx dXx.
1 sinsx 2 sinsx
V@rm) I x d[ } @) J(2-%) d

S S
1

sinsx COSSX
V(2/ ) x[ J - @ [ J
S 52
sinsX COSSX
N(2/ ) (2x)[ J ~—(-1) {- J
S 52

+




sins COSS 1
=2/ ) [ + -
S 52 S
C0S2s sins COSS
+ |- - +
[ 52 S S
2 COSS C0S2S 1
=(2/ 7) - -
S 52 S
Example 10
» X Sinmx
Find the Fourier sine transform of e4XI . Hence show that |
m>0. 0 14x?

The Fourier sine transform of f(x) is given by

F{fX)} = V(2 n) gwf(x) sinsx dx.

V(2/ n) OI e sinsx dx.

o0

e” ( - sinsx — s COSsX)
= 2/ n) { }

1+¢°
0

\(2/ 1) >

1+5¢°
Using inversion formula for Fourier sine transforms, we get

- s
V(2/ ) J{\/(Z/n) }sin sx ds. = e*

1+¢?
Replacing x by m,

s sinms

e ™= (2/n) ds

° .3

1+¢°

w X Sinmx




=@m) [ —— d

1+Xx
» X sinmx e
Hence, [ ———— dx =
0 142 2
Example 11
X 1
Find the Fourier sine transform of and the Fourier cosine transform of
a2+x2 a2+X2
X
To find the Fourier sine transform of ,
3.2+X2
We have to find Fs{e™ }.
Consider, Fs{e®™} = V(2/n) OI e sin sx dx.
S
= @2/ )
a+s’

Using inversion formula for Fourier sine transforms, we get

o0 S
e® =2/ n) OI {\/(2/ ) }sinsx ds.

a+g
» S Sinsx ne™
ie. [ ——— ds = L a>0
0 %442 2
Changing x by s, we get
» X Sinsx ne®
v —— (1)
0 x2+2? 2

X . X
Now Fq =@/ n) | sinsx dx
X2 + a2 0 X2 + a2

-as
me

=(2/ 7) , using (1)
2




= (/2) e®
1

, we have to findF.{e®?}.

Similarly,for finding the Fourier cosine transform of
a2 + X2

Consider, FJ{e®™} = (2/n) {) e™ cossx dx.

a

= \(2/ 7)
a’+s°
Using inversion formula for Fourier cosine transforms, we get

® a
e =A@/n) | {\/(2/ ) }cossx ds.
0 a2 + SZ
% COSSX ne™
ie., [—— ds =
0 P+’ 2a
Changing x by s, we get
»  COSSX ne™®
[ ——— dx = —— e @)
O x*+a? 2a
1 o 1
Now, F. =~@/n) | cossx dx
X2 + a2 0 X2 + a2
ne-as
=~N@/In) T, using (2)
2a
e—as
= N(nf2) —
a
Example 12
2 2

Find the Fourier cosine transform of e * and hence evaluate the Fourier sine transform

2 2
of xe?®*



The Fourier cosine transform of e®* s given by

2 2 © 2 2
F{e®* } =2/ n) J e®* cossx dx
© 22
= Real part of V(2/ n)(f) e X o' dx
1 2 2
= Real part of e/ (Refer example (4) of section 4.4)
a 2.
1 2/
= es/4 (i)
a2,
d
But, Fs{xf(x)} =-— F:()
ds
2 2 d 1 2 2
LFfxet X} = - —q — e®/fe by (1)
ds L a2
1 2 2
= - e s/4% (-s/2ad).
a2
— S e -32/ 4a2
22.a°

Fe[1/Vx] = 1/s
and F[1/Vx] = 1/+s

This shows that 1 / Vx is self-reciprocal.

Example 13
o dx
Evaluate | using transform methods.

0 (a2 + XZ)(bZ + XZ)



Letf(x)=e ™ , g(x)=e™

Then F{s} = V@I n) g e™ cossx dx.
a
= @/ 7)
a’+s°
b
Similarly, G{s} = V(@ n)
b® + §?

Now using Parseval’s identity for Fourier cosine transforms,

ie., ;JDFC(S) . G¢(s) ds = ?f(x) g(x)dx.
2 © ab

wehave, — | —— ds =
. 0 (aZ + 52)(b2 +52)

2ab . ds g @hx N
o — ] —— =
n 0 (a®+s9)(b? +59) —(ath) JO

=1/(a+h)

Oe—38

0 dX T
Thus, ) =
0 (@ +x¥)(b* + X% 2ab(a+h)

Example 14

Using Parseval’s identity, evaluate the integrals

w dx » X2
oj (a2+x2)2 and oj (a2+x2)2 dx
Let f(x) = e
S
Then Fy(s)= ~(2/ n)
a+ ¢
a

Fe(s) = V(2
(s) (n)a2+52

ef(a+b)x dx

ifa>0



Now, Using Parseval’s identity for sine transforms,

ie., I Feo)? ds = | 00| 2 dx .
0 0
w8 "
weget, (2/n) | ds = [ e®dx
(a2 + S2)2 0
" 82 e-2ax .
or 2/n) | ds = =
0 (aZ + S2)2 -2a 0
w X T
Thus ) dx = — ,ifa>0
0 (a®+x?)? 4a

Now, Using Parseval’s identity for cosine transforms,

- ¢ 2 _ v 2
ie., 1 |Fc(s)| ds = | | 00| 2 dx .
o @ »
weget, (2/n) | ds = [ e®™dx
(a2 + 32)2 0
w s 1
or (2a% m) | = —
0 (a2 + 52)2 2a
0 dX T
Thus, | = — Cifa>0

0 (aZ + X2)2 4a3



Exercises

1.

8.

9.

Find the Fourier sine transform of the function

f(x) :{sinx,03x<a.

0 , X>a

Find the Fourier cosine transform of ™ and hence deduce by using the inversion
formula

» COS ax dx T

[ ——— = —e™

°1+x) 2
Find the Fourier cosine transform of e®sin ax.

Find the Fourier cosine transform of e + 3 ¢™

Find the Fourier cosine transform of
(i) e™/x (i) (e™- e™)/x

Find, when n >0 . [(n)
(i) F[x"'] and (i) F[x™] [Hint: 0Ie'axx”'ldx = ,n>0,a>0}

an

Find F[xe™] and Fs[xe™]
Show that the Fourier sine transform of 1/ (1 + x?) is V(n/2) e*.

Show that the Fourier sine transform of x / (1 + x%) is V(n/2) €.

2
10. Show that x €™’ 2 is self reciprocal with respect to Fourier sine transform.

11. Using transform methods to evaluate

w dx
Mo [ — and
P (H(X+4)



UNIT-V

Z — Transforms AND DIFFERENCE EQUATIONS

5.1 Introduction

The Z-transform plays a vital role in the field of communication Engineering and
control Engineering, especially in digital signal processing. Laplace transform and
Fourier transform are the most effective tools in the study of continuous time signals,
where as Z — transform is used in discrete time signal analysis. The application of Z —
transform in discrete analysis is similar to that of the Laplace transform in continuous
systems. Moreover, Z-transform has many properties similar to those of the Laplace
transform. But, the main difference is Z-transform operates only on sequences of the
discrete integer-valued arguments. This chapter gives concrete ideas about Z-transforms
and their properties. The last section applies Z-transforms to the solution of difference
equations.

Difference Equations

Difference equations arise naturally in all situations in which sequential relation
exists at  various discrete values of the independent variables. These equations may be
thought of as the discrete counterparts of the differential equations. Z-transform is a very
useful tool to solve these equations.

A difference equation is a relation between the independent variable, the
dependent variable and the successive differences of the dependent variable.

Forexample, A%y, + 7Ay,+12y,=n®>  ceeeeeeeee (i)
and A%, -3Ay,-2y,= cosn  eeeeeeee- (ii)

are difference equations.



The differences Ay, A%yn, etc can also be expressed as.

Ayn = yn+1 - yny
Azyn = Yn+2 = 2Yn+1 + Yo
Asyn = Yne3 - 3Yn+2 + 3Yn+1 - Ya and so on.

Substituting these in (i) and (ii), the equations take the form

yn+2 + 5yn+1 +6yn :2 n ---------- (”I)
and  Ynez-3Yps2=COSN -memememee- (iv)
Note that the above equations are free of A’s.

If a difference equation is written in the form free of A’s, then the order of the
difference equation is the difference between the highest and lowest subscripts of y’s
occurring in it. For example, the order of equation (iii) is 2 and equation (iv) is 1.

The highest power of the y’s in a difference equation is defined as its degree when
it is written in a form free of A’s. For example, the degree of the equations
Y+t SYns2+ Yo = n+n+1 is3 and y3n+3 + 2Yne1 Yn =51S 2.

5.2 Linear Difference Equations

A linear difference equation with constant coefficients is of the form

A Yn+r T A1 Yner-1 82 Ynar 2+ ... FAYR = O(N).
ie., (@E +aE™ +a E? 4. .. +a)yn=o(n) ------ (1)
where apas, @, . . . . . a, are constants and ¢(n) are known functions of n.

The equation (1) can be expressed in symbolic form as

E)y=on) e @)

If ¢(n) is zero, then equation (2) reduces to



fEy=0 @)

which is known as the homogeneous difference equation corresponding to (2).The
solution
of (2) consists of two parts, namely, the complementary function and the particular
integral.
The solution of equation (3) which involves as many arbitrary constants as the order of
the equation is called the complementary function. The particular integral is a
particular solution of equation(1) and it is a function of ‘n’ without any arbitrary
constants.

Thus the complete solution of (1) is given by y,=C.F+P.l.
Example 1
Form the difference equation for the Fibonacci sequence .
The integers 0,1,1,2,3,5,8,13,21, . .. are said to form a Fibonacci sequence.
If v, be the ' term of this sequence, then

Yn = VYn1 + Yn2 forn>2

Of VYn+2-Yn+1-Yn=0forn>0

5.3 Z - Transforms and its Properties

Definition

Let {f.} be a sequence defined forn=0,1,2,....... ,2then its Z-transform F(z) is defined as
F(z) = Z{f.} :é foz ™,

whenever the series converges and it depends on the sequence {f}.

The inverse Z-transform of F(z) is given by Z*{F(2)} = {f.}.

Note: If {f,} is defined forn=0,+1,£2, ....... , then
F(z) = Z{f.} :ng_jwfn z ", which is known as the two — sided Z- transform.

Properties of Z-Transforms
1. The Z-transform is linear.



i.e, If F(z) = z{f.} and G(z) = Z{g.}, then
Z{af, + bg,} = aF(z) + bG(2).
Proof:

Z{ af, + bgn} :ngo {af, +bg,} z"  (by definition)

aY foz"+bXgyz"
n=0 n=0

aF(z) + b G(2)

2. If Z{f\} =F(z), then Z{a"f,} =F (z/a)
Proof: By definition, we have

Z{a"f} :n;oa” f,z"
= ZO f, (z/a)" = F(z/a)
n:

Corollary:

If Z{f.} =F (), then Z{ a™"f,} = F(az).
dF (2)
3. zZ{nf} =-z ---------
dz

Proof

We have  F(2)= Zofn z"
n=

Differentiating, we get

dFz) .
------ =Y f,(-n)z"*
dZ n=0
1 .
=Y nf, 2"
7 n=0
1
= - - Z{nf,}

V4



Hence, Z{nf.} = -z ---------
dz

4. 1f Z{f,} = F(z), then

Z{fud=2{F@) ~fo—(F1/2) - ... - (fa/ 2 3 (k> 0)

Proof
Z{f}= ZO fo 2", by definition.
n=

0

=Y z" 2 ¥
n=0
o0
=2 3 ez ™
n=0
o0
=73 f,z™, wherem=n+k .
m=k

= F@)—fo— (F/z) - ... .. — (Fea 125}

In Particular,
(i) Z{f n1} = 2 {F(2) - fo}
(il) Z{fne2}=2° { F(2) - fo— (fu/2) }
Corollary

If Z{f.} = F(z), then Z{foi} = ¥ F(2).
(5) Initial value Theorem

IZ {fi}=F (2), thenfo = (t F(z)

Proof

We know that F (z) = fo + f 2t + foz 2 + . ..

Taking limits as z — o on both sides, we get



it F(z)=f
Z—> ©

Similarly, we can find

fi= 0t {z[F(z)-fo]}; fo=10t {Z°[F(z) —fo- f1z"]} and so on.

Z—> © Z—> ©

(6) Final value Theorem

If Z{f,} =F(z), then (t f, = Ct (z-1) F(2)
z—->1

n— o

Proof
By definition, we have

Z {fhs1— T} :ngb{fnﬂ —fu} z"
Z{fri} ~Z{f} = 3 {fs— i} 2"
ie, 2 {F(2) - fo} - F(2) = §0 (-2 2"

(z-1)F@)-fz = Zo{fnﬂ —f}z"
n:
Taking, limits as z — 1 on both sides, we get

E'[l {(Z —1) F(Z)} — fo = [t % {fn+1 — fn} Z_n

z—1 n=0

= nZ:O(fn+1 —f)=F—fo) + (o) +... +(fres 1)
= 0t fhu—T
n— o
ie, (t{z-1)F@}-fo=F.-f
z—1

Hence, f. = £t [(z-1) F(2)]
z—>1

ie, ot f, = 0t [(z-1) F2)]
z—>1

n— oo



SOME STANDARD RESULTS

1. Z{a"} =z / (z-a), for|z| > [al.

Proof
By definition, we have

z{a"} :ngoa” z"

= % (a/2)"
n=0

= z/(z-a), for |z| > |a]
In particular, we have
Z{1} =z /(z-1), (takinga=1).

and Z{(-1)"y=z/(z +1), (taking a = -1).

2. z{na"} = az /(z-a)*

Proof: By property, we have

dF(z)
Z{nfy} =-z --------

dz

d

=7 ~---eee- Z{2}

dz

d z az
Z{na”}: A e T —

Similarly, we can prove

Z{n%a"} = {az(z+a)}/ (z-a)*



3 z{n"} =z - Z{n™"}, where m is a positive integer.
dz
Proof "
Z{n"} =X n"z"
n=0
= ané n™ ! n z'(n+1) ________________ (l)

Replacing m by m-1, we get

Z{n™N=z> "2 nz My
o2

ie, z{n™}= "tz
n=0
Differentiating with respect to z, we obtain

______ Z{nm-l} - z nm -1 (_n) Z-(n+1) __________(2)
dz n=0

Using (2) in (1), we get
d

Z{n"} =-z - Z{n™"}, which is the recurrence formula.
dz
In particular, we have
d
z{n}=-z ----- z{1}
dz
d z z
= -Z ————— ] T e
dz | z-1] (z-1)?
Similarly,
d
Z{n*} = -z ----- Z{n}
dz
d z
AT [



(z-2)°
Z (z - cos0)
4. Z {cosn 0} = -------m-mmmmmmmee- and
7% - 22 cosO +1
z sind
Z {sinn 0} = ----------momomemee

7* - 27 cosO +1
We know that
z{a"} =z /(z-a), if |z| > |a
Letting a=e ', we have

Z{"™} = ememoenn = e
z-e°  z-(cos 0 + isinG)
z
Z{cosnO + isinnO} = -----------------

(z—cos 6) - isin6

z {(z—cos 0) + isin6}

{(z—cos 0) - isinB} {(z—cos 6) + isinO}
Z (z—cos 0) + izsind

7% - 27 cosO +1

Equating the real & imaginary parts, we get

z (z - cos0)
Z (COSN @) = ==mmmmmmmmmmmmmeee and
7% - 27 cos0 +1
Z sind
Z (SiNN Q) = =-mmmmmmmmmmmmeeeeee
7% - 27 cos0 +1
z (z - rcos0)
5. Z{I‘n coSN 0} = —------m-mmmee o and

72— 21z cosO +r?



Zr sind
Z{r" sinnO} = --------mmmmmmmmee e if [z|>|r|
7> — 2rz cos0 +r?
We know that

z{a"} =z /(z-a), if |z]>|a]
Letting a=re' , we have

z{r"e™}= z/(z-re").
z
i.e, Z{r" (cosnd + isinnB) } = ---------- -
z-re"

z — r(cosO + ising)

z {(z - rcosO) + i rsin6}

{(z —rcosB) — i rsin6}{(z — rcosO) + i rsin6}

z (z - rcosB) + i rzsin®

(z — rcos0)? +r° sin®0
z (z - rcosO) + i rzsing

72 — 2rz cosO +r?

Equating the Real and Imaginary parts, we get

z (z- rcos0)
Z{r" cosn0} = --------mmmmmmeemeeeee and
7% — 27rcosh + r?
zrsin@
74 (A 111112 Viflz]>]r]

72-27rcos0 + r?

Table of Z - Transforms
f, F(2)



D
z+1
z
L
z—a
z
n ___________
(z-1)°
722 +7
n2 _____________
(z-1)°
27
nin1) e
(z-1)°
k!z
n(k) ____________
(Z_l)k+1
az
na® 0 e
(z-1)°
z (z-cos0)
cosnd
72— 27c0s0+1
Z sin®
sinn® 0 o
72-27c0s0 + 1
z (z-rcos0)
Mcosn® 0 e
72217 coso +
rz sind
Msinnd e
72-2rz¢c0s0 +1°
2
z
cos(nm/2) e



14.  sin(nm/2) e

722 +1
Tz
15 A
(z-1)*
, T?z(z + 1)
16
(z-1)°
z
17 S
7 eaT
z
18 et
7 e-aT
z(z-cosmT)

19  Z{coswt} = e

zsinoT
20 Z{sinot} e
7% - 2z coswT +1
ze*T (ze*T — cos bT)
21 Z{e ®cosbt} 00 e

72e®T _ 276%T cos bT +1

26" sin bT
22 Z{e Fsinbt} 0 e
7267 _ 2767 cos bT +1



3
2 gz(_zyl)3

Example 2

Find the Z— transform of

(i)  n(n-1)
(i) n°+7n+4
(iii)  (1/2)(n+1)(n+2)
() Z{n(n-1)}=Z{n’}-Z {n}
ey @)
z(z+1) -z (z-1)

(iii)  z{n*+7n+4}=Z{n*} + 7 Z{n}+ 4 {1}

(n+1) (n+2) 1
(i) Z <---mmmmmmmmmmeeh = emeee- { Z{n?*} + 3Z{n}+22{1}}

1 z(z+1) 3z
= -- + -
2 { (z-1)° (z-1)?

27 _
"iéii')'}



Example 3

Find the Z- transforms of 1/n and 1/n(n+1)

n =g
1 1 1
- + mmee- F e +
z 27° 37

=-log(1-1z)if |l/z]<1
=-log (z-1/2)

= log (z/z-1), if | z | >1.

v 1 w 1
- z _____ Z—n _ Z ______ 7 n
n=1 n n=0 n+1
CZ 1 1
= log|------ — 14 - + P +
z-1 2z 3z
7 1 1 (1¥ 11
= log|------ A { + - [J S {
L z-1) z 2 Lz 3 Lz
rZ Y
= log|------ —z{-log (1-1/z)}
\Z_l/
rZ N
= log|------ — z log (z/z-1)
\Z_l/

= (1- 2) log {z/(z-1)}



Example 4

Find the Z- transforms of

(i) cos nmt/2
(i) sin nm/2
0 nrw
(i) Z{cos nn/2} = 3 cos ------ z"
n=0 2
1 1
=1- - + -mee- e
7 z*

Z2
= - , if|z|>]
z7+1
© nm
(i) Z{sin n/2} = % sin ------ z"
n=0 2
1 1 1
=t oo o + - R
z z z°



Example 5

Show that Z{1/ n!} = % and hence find Z{1/ (n+1)!} and Z{1/ (n+2)!}

. (Z-l)n
=) -
n=0 n!
Z-l (2-1)2
=14+ ------- + e +
1! 2!
-1
= z _ el/z

1
To find Z{}
(n+1)!

We know that Z{f,«1} =z { F(z) — fo}

Therefore,
1 1
et 431
(n+1)! n!
=7 { el/Z _1}
Similarly,
1
z{} =22 {e*-1-(12)}.
(n+2)!
Example 6

Find the Z- transforms of the following

@ f(n)y=J nn>0
0,n<0

(i) f(n) =JO,ifn >0
1,if n<0



(iiDfn)=a"/n,n>0
0, otherwise

() 2} =2 F )z "

= i:o nz"
=(1/2)+ @) +(3%)+...
=(1/2) {1+ (2/z) + (312°) +.. .}
= (U2){1- (2}
z-1 17

= 1/zy------

z
=z/(z-1)% if|z > |

(i) (= Sz "

n=-o

0 o d
(iii) Z{fM} =Xf(n)z" =Y - Z7N
n=0 n=0 n!
- (az—l)n
= s
=0
1
— eaZ —e alz
Example 7
272+ 37 +12
If F(z) = --------mmmmm , find the value of ‘f;” and ‘f3’.
(z-1)*

27%+ 37 +12



Given that S P —— .
(z-1)*

This can be expressed as
1 2+3z1+127°
F(z) = - - _
ZZ (1_ Z-1)4

By the initial value theorem, we have

f,= t F(z)=0.

Z-—0

Also, fi= 0t {z[F(z) -]} =0.
Z-—»00
Now, f,= Ut {Z°[F@2)-f,— (f1/2)]}
Z-—»00
2+ 3z +1277
= Lt -mmmmmmmeeeeee- - -0-0.
Z-—® (1_ Z-l)4
=2.
and fa= t {Z[F(2) - fo— (f1/2) — (fd D]}
2+ 3z +1277 2
= ﬁt 23 _____________________________
Z-—0 (1_ Z—1)4 Z2
112°+8z -2
Given that e T e —— =11.
Z-—0 Z2 (2_1)4

5.4 Inverse Z — Transforms

The inverse Z — transforms can be obtained by using any one of the following
methods.They are

l. Power series method

Il. Partial fraction method
II. Inversion Integral method
V. Long division method



. Power series method

This is the simplest method of finding the inverse Z —transform. Here F(z) can
be expanded in a series of ascending powers of z * and the coefficient of z " will be the
desired inverse Z- transform.

Example 8
Find the inverse Z — transform of log {z /(z+1)} by power series method.

1 1/y
Putting z = ------- , F (z) = log< --------------

= - log (1+y)
y? y?
S R — .
2 3
1 1 (-1)"
=70+ e y AacR— 3+ S Sv— z"
2 3 n

0, forn=0
Thus, f, =
(-1)"/n, otherwise

Il. Partial Fraction Method

Here, F(z) is resolved into partial fractions and the inverse transform can be taken
directly.

Example 9

Find the inverse Z — transform of ----------=-emmm--

00 D T —



Then -------- T e T e
z z°+ 7z + 10 (z+2) (z+5)
1 A B

Now , consider ------------------ e + oo
(z+2) (z+5) z+2 z+5
1 1 1 1

3 zZ+2 3 z+5
1 z 1 z

Therefore, F(z) = - oo m oo e

Inverting, we get

1 1
= oo (_2)“ . (_S)n
3 3
Example 10
82°
Find the inverse Z — transform of ~ —mmmmmmmmmmmemeeeeo
(2z-1) (4z-1)
8z° 72
Let F (2) = ------mmmmmmmmmmm e = oo
(2z-1) (4z-1) (z—%) (z—Ya)
F(2) z
Then ---------- = e
z (=) (z—Y)
V4 A B
N ———— SR S EE—
(z=%2) (z—Y4) z-% Z2—Y
F(2) 2 1
We get, e —



z z

Therefore, F(z)= 2 --- -
- Z—Y

Inverting, we get

Z Z
f.= Z {F(2)}=2 zl{} - Z'l{ ---------- }
- Y% Z-Ya

ie, f,=2(1/2"-(1/4)", n=0,1,2,......

Example 11
4-87" + 627
ST IR G ——— by the method of partial fractions.
(1+zh) (1-221?
4-87" + 627
Let F(z) = -------------------
(1+zh) (1-221?
47 - 82’ + 62
(z+1)(z-2)
F(2) 47° - 82 +6 A B C
Then ----- = e D oo S EEN— ,Where A=B=C=2.
z (z+1)(z-2)? z+1 z-2 (z-2)
F(z) 2 2 2
Sothat ------- = =ee-em- + ommmeeeee + e
z z+1 -2 (z -2)°
2z 22 2z
Hence, F(z) = ------- R + -
z+1 z-2 (z -2)°

Inverting, we get
fo= 2(-1)"+2(2)"+n.2"

ie, f,= 2(-1)"+ (n+2)2"



Inversion Integral Method or Residue Method

The inverse Z-transform of F (z) is given by the formula

= Sum of residues of F(z).z"* at the poles of F(z) inside the contour C which is
drawn according to the given Region of convergence.

Example 12
Using the inversion integral method, find the inverse Z-transform of
3z
(z-1) (z-2)
3z
Let F(z) = ---------mm-mm-
(z-1) (z-2)

Its poles are z = 1,2 which are simple poles.
By inversion integral method, we have

1
| — [F(2). 2" dz = sum of resides of F(z). z "™ at the poles of F(z).
2mi ©
1 3z 1 3z"
YR A p— [ B Ao A pu— [EE—— dz = sum of residues
2ni © (z-1)(z-2) 2ni © (z-1)(z-2)
--------- (1).
Now,
3z"
Residue (atz=1) = {t (z-1). -wreeeem = -3
z>1 (z-1)(z-2)
3z"
Residue (at z=2) = 0t (z-2). -=----=---=--- =32"
2 (z-1)(z-2)

-.Sum of Residues = -3 + 3.2" = 3 (2"-1).
Thus the required inverse Z-transform is

f,=3(2"-1),n=0,1,2, ...



Example 13

z(z+1)
Find the inverse z-transform of ----------- by residue method
(z-2)°
z(z+1)
Let F(z) = -----------
(z-1)°

The pole of F(z) is z = 1, which is a pole of order 3.
By Residue method, we have

T R— | F(z). z"* dz = sum of residues of F(z).z " at the poles of F(z)
- C

21 D1 dz? (z-1)°

1 d?
R {"+ 2"}
21 21 dz?
1
= 0t {n(n+D)z" +n(n-1)z"™* }
2 z>1
1
= {n(n+l) +n(n-1)} =n?
2

Hence, f,=n?n=0,1,2,.....

V. Long Division Method

If F(z) is expressed as a ratio of two polynomials, namely, F(z) = g(z*) / h(z™),
which can not be factorized, then divide the numerator by the denominator and the
inverse transform can be taken term by term in the quotient.

Example 14



Find the inverse Z-transform of

.................... , by long division method

1-z
1+27*
Let F (2) = ----------------
1-71
By actual division,
1+3z° +3772+373
1—z'1> 1+ 2z°
1-z7
+3z7"
3z - 3772
+3z27
3272373
+3z273
323327
+3z 7
ThusF(z)=1+3z+3z%+32°%+......
Now, Comparing the quotient with
Zofnz'” =fo+fizt+ 22+ fz%+. ...
n:
We get the sequence fyas fop=1,fi=f=f;=...... =3.
Hence f, = 1, forn=0
3, forn>1
Example 15
y

Find the inverse Z-transform of



By actual division

1-3z1 + 22'2> 7!
7132242773

327°-2z7°
3z2-9z %+627*

723 -627*
723212 % +147°

+15z% 14z

LDF@) =zt +3z2% 4723+
Now comparing the quotient with
o0
> faz " =fotfzt 4Rzt iz 3+
n=0
We get the sequence f,as fo=0,f,=1,f,=3,f3=7, .... ... ...

Hence, f,=2"1,n=0,1,2,3, ..

Exercises

1. Find Z* {4z / (z-1)®} by the long division method

X =111 [l F———— by using Residue theorem

I =11 A (S —— by using Residue theorem
(z+2) (2°+4)
. J

4. Find Z* (z/z-a) by power series method

5. Find Z* (e%%) by power series method



(=T3[4l —— by using Partial fraction method

5.5 CONVOLUTION THEOREM
If Z4F @)} =", and Z'{G(2)} = gy, then
n
ZY{F(2). G(2)} = Zofm. On-m = fax gn, where the symbol * denotes the operation of
m=

convolution.

Proof o o

We have F (z) = ZO f.z", G(2) = ZO OnZ ™"
n= n=

DF@).G@) =(fo+fizt+fz?+ .+ 2"+ .. ). (Qo+ 1zt + gz P + ..+ gnz "+
...00)

= ngc“) (fogn+flgn-l+fzgn-2+ ot fngo)z—n
=Z (fogn+flgn-1+f29n-2+ Lot fngo)
n
= Z[ Z 1:m gn-m]
m=0
=Z{f. * gn}
Hence, Z'{F(2).G(2)}=f,*g,
Example 16

Use convolution theorem to evaluate

z
A T
(z-a) (z-b)
We know that Z™* {F(z). G(2)} = f.*gh.
z z
Let F (z) = ---------- and G (z) -----------
Z-a z-b
z z
LR A E— A Rl o N— _—

Z-a z-b



Now,
Z {F@). G@)} =f,*g,=a"*b"

n
- z am bn-m
m=0
n a ~m
=b" X [ ------ J which is a G.P.
m=0 b
(a/b) " -1
="
(a/b) -1
ZZ an+1 bn+l
e, A (— T
(z-a) (z-b) a-b
Example 17
z
Find %4 | - by using convolution theorem
(z-1)
7 z
Let F (z) = ---------- and G (z) -----------
(z-2)° (z-1)

Thenf,=n+l1&g,=1
By convolution Theorem, we have

Z'{F@).G (@) }=fa*gn=(n+l)*1= éo (m+1) .1
(n+1) (n+2)

Example 18
Use convolution theorem to find the inverse Z- transform of

[1-(1/2)z 1 [1- (1/4)7Y



[1-(1/2)z Y [1- (W42 [z-(1/2)] [z — (U4)]
LetF (z) = Z -------- & G(z) = - Z -------
z—(1/2) z— (1/4)
Then f, = (1/2)" & gn = (1/4)".
We know that Z{ F(2). G(2)} = f., * g,

= (1/2)" * (1/4)"

15 131 5™
1% Z_[_--_--J ------
4 ) ™oL 2 4
-1 5,
] [ ZLO 2m
L4 ) "
-1 Nn
= — { 1+2+2%+ ...+ 2"} whichisa G.P
\4 J
1 \n{2n+1-l }
L4 ) 2-1
-1~
- {2n+1_1}
\4 J

1 1 1
Z':L SIS (. U, T
{[1 ~(1/2)z "1 [2- (1/4)2'1]} 2"t 4"



5.6 Application of Z - transform to Difference equations

As we know, the Laplace transforms method is quite effective in solving linear
differential equations, the Z - transform is useful tool in solving linear difference

equations.

To solve a difference equation, we have to take the Z - transform of both sides of
the difference equation using the property

Z{fouy=2{F@)—fo— (F1/2) - ... - (fea / 2" } (k> 0)
Using the initial conditions, we get an algebraic equation of the form F(z) = ¢(z).

By taking the inverse Z-transform, we get the required solution f, of the given difference
equation.

Exmaple 19
Solve the difference equation Yyn+1 +yn =1, Yo =0, by Z - transform method.
Given equationisyp+1 +yo=1 e 1)
Let Y(2) be the Z -transform of {y,}.
Taking the Z - transforms of both sides of (1), we get
Z{ynn} + Z{yn} = Z{1}.
ie, z{Y(@2) - yo} + Y(2) = 2 /(z-1).
Using the given condition, it reduces to
(z+1) Y(2) = Z
z-1

z



i.e, Y(2) = --mm-mmmmmmmmmmeeeeen
(z-1) z+1)

or Y(2) = 1 J, ’ 1

z
2 z-1 z+1J

On taking inverse Z-transforms, we obtain
o= (12){1-(-1)"}
Example 20
Solve yne2+Yn=1,yo=y1 =0, using Z-transforms.
Consider T L (1)

Taking Z- transforms on both sides, we get

Z{Yn+2}+ Z{yn} = Z{1}

Y1 Z
2 {Y(2)- Yo - -~ 14 Y(2) = oo
z z-1
y
(Z+1) Y(@) =--mmeeeeee
z-1
y
OrY(z) =--------mmmmmmemeeee
(z-1) +1)
Y(2) 1 A Bz+C
Now, T S e
z  (1)@@+1) ozl 2241
1 . 1 z 1S
2 z-1 Z+1  Z+1
1 -z 7 Z N
Therefore,  Y(z) = - | ===momm = cmmmeeme o s
2 z-1 z2+1 z2+1 )




Using Inverse Z-transform, we get

Yo =(%2){1 - cos (nmt/ 2) - sin (hx/ 2)}.

Example 21
Solve Ynio + 6Yni1 + 9y = 2", Yo = y1 =0, using Z-transforms.
Consider Ypsz + 6Ynsg + 9y = 2" —--mmme- (1)

Taking the Z-transform of both sides, we get

Z{yn+2} + 6Z{yn1} + 9Z{yn} = Z {2}

Y1 z
ie, 22 \Y@)-yo- - +62 {Y(2) - Yo} +9Y(2) = -

z -2
Z
(22 +62+9)Y(2) = --------
z-2
Z
e, Y(2) = - .
Y&)'z) (z+3)3
Therefore, O
z (z-2)(z+3)?
Y(z) 1 1 1 1 1 1
@, meem = mees e e e e
z 25  z-2 25 z+43 5 (z+3)°
using partial fractions.
1 z z 5z
Or Y(2) = --mmmmQmrmm = e eeeen
25 | z-2 7+3 (z+3)?

On taking Inverse Z-transforms, we get



yn=(1/ 25){ 2" - (-3)" + (5/3) n (-3)"}.
Example 22
Solve the simultaneous equations
Xn+1-Yn = 1; Yne1 - Xp = L with x (0) = 0; y (0) = 0.

The given equations are

Xn+1 - Yn =1, Xo=0  --mmmmmeeee- 1)
Yne1 - Xn =1, Yo=0  -mmmmmmmmees )
Taking Z-transforms, we get
z
z{X(2) - X0} - Y(2) = --------
z-1
z
2{Y(2) - Yo} = X(@) = -
z-1
Using the initial conditions, we have
z
zX(z2) -Y(z) = --—-----
z-1
z
zY(2) - X(z) =--------
z-1
Solving the above equations, we get
z z
X(2) = ------- and Y(z) =------- :
(z-2)° (z-2)°

On taking the inverse Z-transform of both sides, we have x,=n and y,=n,
which is the required solution of the simultaneous difference equations.

Example 23
Solve Xpi1 = 7Xn+ 10y ; Yne1 = Xn + 4y, With Xo =3, Yo =2

Given Xne1 = TXn + 10y =mmmmmmmmeeee (1)
Yne1 = Xn+4Yn  mmmemmeeee- (2)



Taking Z- transforms of equation(1), we get
z2{X(2)-%X}=7X(2) +10Y(2)
(z-7)X(z)-10Y(z) =3z ---------- (3)

Again taking Z- transforms of equation(2), we get

z{Y(2) - Yo} = X(2) +4Y(2)
-X(z) +(z-4)Y(2) =2z ---------- (4)

Eliminating ‘x’ from (3) & (4), we get

272 - 117 27° - 117
Y(2) = --mmmmmmmmmmoen S e
7% - 11z+8 (z-9) (z-2)
Y(2) 2z - 11 A B
sothat  ---- = ceemmeeme = e + oo .where A=1and B=1.

Y(2) 1 1
Ie, —---= = —mmmmeeee + -
Z z-9 z-2
Z Z
ie, Y(z) =-------- + e
z-9 z-2

Taking Inverse Z-transforms, we get y, = 9" + 2".

From (2), Xn = Yne1 -4y, = 9"+ 2™ -4 (9" + 2"

9.9"+22"-49"-42"
Therfore, x,=5.9"-2.2"

Hence the solution is x,=5.9"-2.2" and y,=9"+2".

Exercises

Solve the following difference equations by Z — transform method



1Yoz +2¥ne1+Yn=n, Yo=y1=0
2.V -Yn=2"y0=0,y1=1

3. Un+2 — 2€0S0t Un+1+ Un=0, Up = 1, U1 = COSaL

4 Unt2 = Unsg + Un, Up=0,U1 =1

5. Yne2 = SYnert 6y =n(n-1), Yo =0,y1=0

6. Ytz — OYne2 + 12Vns1 - 8Yn =0, Yo =-1,y1=0,y, =1

5.7 FORMATION OF DIFFERENCE EQUATIONS
Example

Form the difference equation

y, =a2"+b(-2)"
yn+1 — a2n+l + b(_z)n+l
=2a2"-2b(-2)"

Y., =a2"% +b(-2)""
=4a2" +4b(-2)"
Eliminating a and b weget,
y, 1 1

Yo 2 -2
yn+2 4 4

=0

yn (8+ 8) _1(4yn+1 + 2yn+2) +1(4yn+1 - 2yn+2) = O



l6yn _4yn+2 =0
_4(yn+2 _4yn) =0
Yni2 _4yn =0

Exercise:
1. Derive the difference equation form y_ = (A+ Bn)(-3)"

2. Derive the difference equation form U, = A2" + Bn
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UNIT -1
PARTIAL DIFFERENTIAL EQUATIONS

1. Explain how PDE are formed?
PDE can be obtained

() By eliminating the arbitrary constants that occur in the functional relation
between the dependent and independent variables.

(i) By eliminating arbitrary functions from a given relation between the dependent
and independent variables.

2. From the PDE by eliminating the arbitrary constants a & b from z=ax+hby.
Given z=ax+hy

Diff. p.w.r. to x we get,

ﬂ—a e, p=a
OX o
Diff. p.w.r.to y we get,

o7

—=b e, qgq=b
oy a

Substituting in (1) we get z= px+qy.

3. From the PDE by eliminating the arbitrary constants a & b from z = (x* +a®)(y* +b%).
Given z=(x*+a%)(y*+b?) --------- (1)

p =% —(2x)(y? +1?)
OX



Substituting (2) & (3) in (1) we get the required p.d.e.

e,z =3 [ﬂjzm
2y )\ 2x) 4xy
4xyz = pq.
4. Eliminate f from z = f (x> +y?).

Given z=f(x*+y?) (D)

Diff (1) p.w.r.to x and y we get,

oz Vo o

o f'(x* —y*)[2x]

ie, p=f(¢-y")[2x] ..(2)
oz oo

Sy f/(x* —y*)[-2y]

ie, q="f(-y)[-2y] ..(3)
@_ p_=X

3 a



5. Obtain PDE from z =f(sinx+cosy).
Given z =f(sinx+cosy)

oz .
=— =f'(sin x+cos y)|cos X
P == ( y)[cosx]

oz . .
=— =f'(sinx+cosy)|-sin
q 5y ( y)[-siny]

@: P _ cosx
(3) q —siny
psiny =-—qsiny

psiny+qsiny =0.

6. Solve ﬂ =sin x.
OX

Given ﬁ=sinx
OX

Integrating w.r to x on both sides

Z=-COSX+C
But z is a function of x and y
z=—cosx+ f(y)

Hence c =f(y).

(1)

(2)

(3)



7. Mention three types of solution of a p.d.e (or) Define general and complete integrals of a

p.d.e.

(1) A solution which contains as many arbitrary constants as there are independent
variables is called a complete integral (or) complete solution.

(if) A solution obtained by giving particular values to the arbitrary constants in a
complete integral is called a particular integral (or) particular solution.

(iif)A solution of a p.d.e which contains the maximum possible number of arbitrary

functions is called a general integral (or) general solution.

8. Solve \[p +./q =1
Given [p+iq=1

This is of the form F(p,q) = 0.

Hence the complete integral is z=ax+by+cz.

where, \/5+\/5=1,\/5=1—\/5
b=(1-a)?
Therefore the complete solution is
z=ax+(1-a)y+c = wemoeme (1)
Diff.p.w.r. to c we get,
0=1
There is no singular integral.

Taking c= f(a) when fis arbitrary.

z=ax+(1-va)’y+f(@) - (2)



Diff. p.w.r.to 'a’

0=x+2(1-a) [ﬁl_} y+f'(@ - 3)
a

Eliminating 'a' between (2) & (3) we get the general solution.

9. Find the complete integral of z = px+qy+ p°+0q°.
Given z=px+qy+p°+0q°.
This equation is of the form z=px+qy+ f(p,q).
By Clairaut’s type,put p=a,q=»b.

Therefore the complete integral is z=ax+by+a®+b*.

10. Find the complete integral of gq=2px.
Given q=2px.

This equation of the form  f(x, p,q) =0.

a

Let g=a, then P~ oy.

But dz= idx+ady.
2X

Integrating on both sides,

Idz:jzixdx+jady,



z=%|ogx+ay+b.

11. Find the complete integral of pg=xy.
Given pg=xy.

Hence 2=
q

X

Itis of the form f(x, p)=¢(y,q).

et PoY g,
X q
. p=ax and q:X.
a

Hence dz = pdx+qdy .
dz= axdx+ldy.
a

Integrating on both sides,

2 2

z=a>+¥ 1c.
2

2a

2az=a’x* +y* +b is the required complete integral.

12. Solve px+qy=z.
Given px+qy=z = ----—--- (1)

This equation is of the form Pp+Qg=R



when P=x, Q=Yy, R=z

The subsidiary equations are —=—=
P Q R

dx dy dz
ie., —=—=—

X 'y z
dx dy

Take —=— dx _dz

Xy Take M
&y dx_pdz
X y X z

log x=logz+logc,

log x=log y +logc,
log x=1log(zc,)

log x=log(yc,)

X =Yy X = 1ZC,

X _. X _¢

y 1 7 2

X

ie., u=— 1€, V=;

Therefore the solution of the given p.d.e is ¢ [f,ﬁj =0.
y z

13. Solve (D* -4DD’'+3D"?)z=0.
Given (D®-4DD’'+3D'?)z=0
The auxiliary equation is m”> —4m+3=0

m(m-3)-1(m-3)=0
m=3, m=1

The roots are distinct.
Hence C.F =4 (y+X)+d,(y+3X).

-.z=C.F.



z=¢(y+x)+¢,(y+3x).

14. Solve 2r +5s—-3t=0.
Given 2r+5s-3t=0.

The given differential equation can be written as,

2 2 2
202,502 302 g
OX oxoy oy

ie, (2D*+5DD'-3D")z=0.
The auxiliary equation is, 2m*+5m—-3  =0.

2m?+6m-m—-3=0
2m(m+3)-1(m+3)=0
(m+3)(2m-1) =0

m:—3,m:1
2

CF=g¢(y-3x)+f (y+%xj

5z =¢(y—-3%)+¢,(2y+X).

15. Find the P.1 of (D2 + DD’)z=eX‘y.
Given (D2 + DD’) 7=

1

1 -
Pl=————¢""’ Pl=—e" ==-¢".

D?+ DD’ 1-1



If we replace D by 1 and D’ by -1 we get dr=0.

X - X -
e* Y — x-y

2D+D" 2(1)—1e

Pl =

= Xy = xe
1

16. Find the P.1 of | D*—2DD'+ D" | z=cos(x-3y).

Given |D’-2DD'+D" |z=cos(x-3y)

1
Pl = 5 35D 1 D7 cos(x—3y)

_ cos(x—3y)
~ —1-2(3)-9

-1
= — —3
I cos(x—3y)

PART-B

1.Solve z=px+qy ++1+p>+q°.

Soln:

Given: z=px+qy ++1+ p® +q°

This is of the form z=px+qy+f(p,q)

Hence, the complete integral is z=ax+by + V1+a® +b? -----------

Where a & b are arbitrary constant.
To Find The Singular integral:

Diff (1) p.w.r.to a,

We get, 0=x+0+ (2a)

1
241+ a’ +b?



a=-xvl+a® +b? --------- 2

Diff (1) p.w.r.to b,

Weget, 0=y+0+ (2b)

1
2V1+a’® +b?
b=-yvl+a® +b* --------- (3)
(1)=>z=-x>\1+a? +b> —y*\1+a® +b? ++1+a’ +b?

z=01-%x">-y?)W1+a® +b? ---mmmmmm- (4)

@=>z=01-x"-y*)

72 —1_x% _ y2
x> +y?+z22=1
Which is the singular solution.

To Get the general integral:

Put b=¢(a) in (1), we get

Z=ax+ @)y + 1+ a’ +[H(a)]? ------memmeem- (5)

Diff (5) p.w.r.to a, we get

2a+2¢(a)p'(a)

0=x+ ¢'(a)y +
21+ a2 +[¢(a)]°

Eliminate a between (5) abd (6) to get the general solution.

2.Solve y?p-xyg=x(z-2y)

Soln:

Given y?p-xyg=x(z-2y)

This equation of the form Pp+Qg=R



Here, P=y? ,Q=-xy, R=Xx(z-2y)

The Lagrange’s subsidiary equation are & = dy = a
P Q R
Ve, X W &
y© =y x(z-2y)

Take ,

dx _ dy dy  dz
y: —xy —xy  x(z-2y)
ax_ dy dy

y -Xx -y (z2-2y)
xdx=-ydy (z-2y)dy=-ydz

fx dx= —I y dy z dy-2y dy=-ydz

X*_ ¥y .G

V=5t dz+zdy=2yd

5 > y y=zyay
XHy'=e, [d(y2)=[2ydy
u=x’+y? yZ=yP+Co

v=yz-y*

Hence the general solution is f(x*+y? , yz-y?)=0.

3.Solve: (3z-4y)p+(4x-22)q=2y-3x
Soln:

Given: (3z-4y)p+(4x-2z)q=2y-3X
This equation of the form Pp+q=R

Here, P= (3z-4y) ,Q=(4x-2z) , R=2y-3x



s . dx
The Lagrange’s subsidiary equation are 3 =—=—

Q R
ve. (3z -dé)l(y) - (4xd-y22) B 2yd-23x o @)
Use Lagrangian multipliers x,y,z,

We get the ratio in (1)
_ xdx + ydy + zdz _ xdx + ydy + zdz
(3z-4y)x+ (4x - 2z)y + (2y - 3X)z 0
Xdx+ydy+zdz=0
Integrating we get [ xdx+ [ ydy+ [zdz=0
i.e, X*+y*+z°=a.
Again use Lagrangian multipliers 2,3,4,
We get the ratio in (1)
2dx + 3dy + 4dz _ 2dx + 3dy + 4dz

:(62-8y-12x-62+8y-12x 0
20dx+3dy +4dz =0

Integrating, we get IZ dx + I3dy+ I4dz =0
2x+3y+4z=h.

Hence the general solution is,

FOC+y*+2% | 2x+3y+42)=0.



4.Find the general solution of x(y*-z%)p+y(z%-x*)q=z(x*-y?)
Soln;

Given; x(y*-z*)p+y(z*-x*)g=z(x"-y")

This equation of the form Pp+g=R

Here, P= x(y*-Z®) ,Q=y(z*-X%), R=z(x’-y?)

The Lagrange’s subsidiary equation are % = ﬂ = %
P Q R
. dx dy dz
\i.e, — ==
Xy -z°%) yz -x%)  z(x"-y7)

Use Lagrangian multipliers x,y,z,
We get the ratio in (1)
_ xdx + ydy + zdz _ xdx + ydy + zdz

Xy*-z*)+y(@ -x*) +z(x* -y*) 0
xdx+ydy+zdz=0
Integrating we get J.xdx+ j ydy+'[z dz=0

2 2 2
Xy 7" _a

2 2 2 2
i.e, X’+y?+z%=a.
Again use Lagrangian multipliers lll

X'y z
We get the ratio in (1)
1dx+1dy+1dz de+idy+1dz

_ X y z _ X y z

y2 -2 +7° x>+ x* —y? 0

ldx+1dy+ldz =0
X y z



Integrating, we get J'l dx+ J'l dy + J.ldz =0
X y z

logx +logy+logz=log b

Hence the general solution is,
FOC+y*+2? | logx +logy+logz)=0.
5.Solve:[D3-2D°D’|z=e*"?+4sin (x+y)
Soln:

Given: [D*-2D’D’Jz=e*"?+4sin (x+y)
The auxiliary equation is m*-2m?=0
Replace D by mand D’ by 1
m?(m-2)=0

m=0,0 and m=2

C.F=4,(y) + x¢,(y) + ¢, (y + 2X)

Pl -12D2D'ex+2y
1
(1)°-2(1)°(2)
Replace D by 1and D'by 2

1
_ - e><+2y

X+2y



1 .
Pl, =———4sin(x+
2 D3 _2D2D, ( y)

SIP4— T gt

D® -2D*’D
1

— ei(x+y)
(i)* —2(3i)* (i)
Replace Dby iand D'by i

_atp—t e
—i1+2i

—a1pleit
|

=4 1P (—i(cos(x + y) +isin (x + y))
=—4¢c0s (X +Y)

Hence the general solution is

Z= 4y (y) + X, (y) + s (y + 2X) —%e“v ~ 408 (x+y)

UNIT 11
FOURIER SERIES

PART - A

1. Explain periodic function with examples.

A function f (x) is said to have a period T if for all x, f(x+T)=f(x), where Tisa

positive constant. The least value of T >0 is called the period of f (x)
Example : f(x)=sinx ; f(x+27z)=sin(x+27) = sinx.

Here f(x)=f(x+2x). sinx is a periodic function with period 27 .



2. State Dirichlet’s conditions for a function to be expanded as a Fourier series.

Let a function f(x) be defined in the interval c<x<c+2z with period 27 and

satisfies the following conditions can be expanded as a Fourier series in (C, C+ 27).

(i)  f(x) isawell defined function.
(i) f(x) is finite or bounded.
(iiiy  f(x) has only a finite number of discontinuous point.

(iv) f(x) has only a finite number of maxima and minima.

3. State whether y =tan x can be expressed as a Fourier series. If so how?. If not why?

tanx cannot be expanded as a Fourier series. Since tanx not satisfies Dirichlet’s
condition.
4. State the convergence condition on Fourier series.

(i) The Fourier series of f(x) converges to f(x) at all points where f(x) is

continuous.

(i) At a point of discontinuity x,, the series converges to the average of the left limit and

right limit

of f(x) at x,
ir.. .
f(xo)=§[|h.ggf(x0+h)+|h.ggf(xo_h)]

5. To what value does the sum of Fourier series of f(X) converge at the point of continuity

Xx=a?

The sum of Fourier series of f(X) converges to the value f(a) at the continuous point



6. To what value does the sum of Fourier series of f(x) converge at the point of

discontinuity x=a?

At the discontinuous point X = a, the sum of Fourier series of f(X) converges to

f (% +h)+f(x—h)

f(xo)zLiDg{ : }

7. 1f f(X)=x*+x is expressed as a Fourier series in (—2,2), to which value this series

converges at
X=27.
f(X)=x2+X, —2<x<2

The value to which the Fourier series of f (X) converges at X =2 which is an end points

is given by
_f(-2)+f(2)  (4-2)+(4+2) 5
- 2 - 2 -
The Fourier series converges at x =2 to the value 4.
if
8. If f(x):{COSX I O<x<m and f(x)=f(x+2x) for all x, find the sum of the
50 if 7<x<2rx

Fourier series

of f(x)at x=r.
Sum of the Fourier series of the function f (x) at x=7.

f(z—)+f(7+ cos .z +50 -1+50 49
SIESILSMION = R




9. If f(x)=sinhx is defined in —7 <x< 7, write the value of a,,a,
Given f (x)=sinhx
f (—x)=sinh(—x) = —sinhx

=—f(x).

.. sinh X is an odd function.

5o 8,=0, a,=0.

10. Write the formulae for Fourier constants for f(x) in the interval (-7, 7).

The Fourier constants for f (x) in the interval (—z, ) are given by
17 17

ay=— j f (x).dx a, =— j f (x) cos nx.dx
72- =T 72- —7T

b, = 1 j f (x)sin nx.dx
72-—7[

11. Find the constant a, of the Fourier series for function f (X)= Xin0<Xx<2rx.
2z 27
1 l 2 27 2
g, == [ fogdx==[xdx _1/X | 147 4 5,
Ty T T 2], 7w 2
ie. a,=2r.

12. If f(x)=|x| expanded as a Fourier series in (-, ), find a.



The given function f (x)=|x| is an even function.
17 17 27 2[ 2]

=— | f(X)dx==—| |xjdx=—|XdX=—| — | =7

a, %I (x) ﬂ_jﬂ|| | {2} .

T

13. Find the Fourier coefficients a, of f(x)=e" in—7<x<7.

1t wgw - Lrxe 1. . .\ _ 2sinhz
aO:;J;edx—”[eLr —ﬁ(e e”) = —

14. Find b, in the expansion of x* as a Fourier series in (— 7T, 7T)

Since f(x)=x* is an even function, the value of b, =0.

15. Find the constant term ao in the Fourier series corresponding to f(x)= x—x3 in

(—m, 7).
Given f(x)=x-x
f(=x)=—x+x3 =—(x=x¥)=—(x)

ie, f(=x)=—f(x)

f (x) isan odd function in (- 7, z)

Hence a, =0.

16. If f(x)=x*-x"is expanded as a Fourier series in (—1,1), find the value of b, .



f (x) is an even function in (-I,1).

Hence b, =0.

1+2—X, -r<x<0
T

1—2—X, O<x<m
T

17. In the Fourier expansion of f(x)= in (—m,7), find the value of

b, the

coefficient of sinnx.

1—2—X, O<x<m=zm
f(=x)= Z”X
1+—, —w<x<0
T

- f(x) is an even function of x in (-7, 7)

The coefficient of sinnx, b, =0. Since the Fourier series of f(x) consists of cosine

terms only.

18. Find the constant a; of the Fourier series for the function f(x):xcosx in

—nT<X<T.

f (X) = xcos x



f (—x) =—xcosx =—1 (x)

- f(x) isan odd function. Hence a, =0.

19. Write the Fourier sine series of k in (0, 7).

The Fourier sine series is given by f (X) =) by, sin nx
n=1

17 i z
where b = —j f (x)sin nX-dX:EIksin nx dx
7[_7[ 0

n
T

- . 4k .. .
_ Zk{ COS nx} :2_k[1_(_1)n] T if n is even
7 N d N7 0, if n is odd

fo)= > 2K gin nx = ﬁi ! sin[(2n—-1)x].

n is odd nz 7T h21 (2n _1)

20. Obtain the sine series for unity in (0, 7).

Here f(x)=1 f(x)=)_b,sin nx
=1

1% : ¢
where b,= — j f (x)sinnx.dx = g_[l.sin nx dx
4 -7 3 0

2] —cosnx|” 2 A4
z_{—} :_|:1_(_1)n:| e b = — if nis even
A 0, if n is odd



0

fx)= > A sinmx =2

sin[(2n-1)x].
nisodd N7T 7T n=1 (Zn_l) [( ) ]

21. Find the value of a,, in the cosine series expansion of f (x)=k in the interval (0,10).

sin 12X
10 A~
aﬂ;i[keog@dx :K _ 10 =E{E(sinnﬂ_0)} =0
104 10 5| nr 5| nz
10 o

23. Define Root Mean Square value of a function.

The root mean square value of y = f(x) in (a, b) is denoted by Y . It is defined as

24. Find the R.M.S value of y=x* in (-, 7).
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26. State the Parseval’s Identity (or) theorem on Fourier series.

If f(x) is a periodic function of period 2z in (c, c+2x) with Fourier coefficients

c+27

1 2 aé 2 2
a,, a, and b, then o I [f(X)] dx = ?+Z(an+bn)-
c n=1

27. Write the complex form of Fourier series for f(x) defined in the interval (c, c+2l).

The series for f(x) defined in the interval (C, C+27) and satisfying Dirichlet’s

conditions can be given in the form of



C+27

N inx 1 —inx
f(x)= chen , Where C, = — I f(x)e""dx.

N=—00 272-

28. What do you mean by Harmonic analysis?

The process of finding the Fourier series of the periodic function y= f(x) of period

2l (or) 27 using the numerical values of x and y is known as Harmonic analysis.

PART B

1) Express f(x)=% (mr — x) as a Fourier series with period 2 to be valid in the interval 0 to 2.

Hence deduce the value of the series 1 — i— i — % + e

[

Solution:

We know that the Fourier series be

¥

a. - &
fix) = ?E —Z a, cosnx —Z b, sinnx ... (1)
n=1 n=1

_ _l(g,f—Tﬂ)—[ﬂ—Gjl = —[(2n®—22%)]

2w \ 2w



1
27
a, =0
a, =
a, =
a, =
1
2w
a, =
1
2
a, =0
b o=

= —[[ﬂr—l

1

— J.;_ flx) cosnx dx

T

1‘3“[1

— —|T— X
S B G

-
r &7

1

EJ&_ [(r — x)] cosnx dx

2

I:E-"J'I',J'I',Z'L [—CDS"R?L]

COSNX dx

1 l[ﬁ—xj [S'Rﬂl] (- lj[
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Sub in (1) we get

1 1
EEJT_X) = 0+ o=+ Z—sinﬂx

T

n=1

1 L
“(r—x) = Z_Sin nx ... (2)
2 ="



Put x = Z isa point continuity

1 T — 1 nw
—[ﬂ'——] = Z—sin—
2 2 T 2

n=1

i 1
212 3 5
T 1 1
_— = l _______
4 3 5 7

1 1 1 T
ie ., 1——4—=——== L= =

3 & 4

2) Obtain Fourier series for f(x) of period 21 and defined as follows

=%, 0=x=1 1.1 1 _m 1
flx) = {uj L < x < o Hencededucethatl —Z+-—Z+-=%and 5+5+5+
Solution:

Given f(x) = {3 —x, 0=<x=l
We know that the Fourier series is
ay N nET N . X
fﬁl’j:?_zﬂ”CDST_Z o, SinT ...... (1)
n=1 : n=1 ;
Where

17
ap = ?_J flx)dx

|:.

1 r NITX 1 r T
a, = ?_J flx) cos—— dx b, = TJ Flx) sinTn’x

(W) i ) o -
e
= — 1 ae . 1
ay =7 J (I —x)dx+0

|:.



nwx’ nwx’
1 ? gin ] —C0os ]
z? (1—x) T = (=1 127 2
[ 72
1 I 12
=—l[!—!](—)simnﬁ— —
! T nim?
1 12 12
ﬂ.ﬂz_‘]_ < -~ _l:v!_ -~ -~
o] ’rt-rr-( ) nmw?
1 1°
=———[1-(-1"
!ﬂ:;r-[ (=171
21
a =[ﬂ: = if nis odd
0, if niseven




1 T
b,,!:;l— J(E—x}lsin ? dx +0
2P I
s T % i ) ﬂﬂ-.ﬁ.‘ -
1 —cos— —sin—
=7 (ﬂ— -0 (ﬂ—
1 .
\ I / L T2 /

f:

1 I I
b = —[[{J] [—J (—cosnm) ———sinnm + (I —0) [—J cos0+ 0
oo ni T ni

- T

Substituting the values in equation (1) we get

a0

I o 21 TLXTT I nxm
flx)=—+ ——cos + sin
2X2 neme l T l

n=odd n=1

T | nem IS0 1 nxw
flx)=—+— —cos +— % —sin
4 m- ne l i n l

n=pdd n=1

This is the required Fourier series

i) Put x = [ is a point of continuity

I 200 1 alm 101 nlm
flly=—+— —COS ——Z—sm

4 q* ns [ T 7 l

n=opdd n=1




! 21 1
[—l=—4— _(—1)"+ 0
4 = ﬂ-E j
n=pdd

12 w1

—T— —(—1)*=0

4 g r?,( )
n=pdd

23[ 1 1 1 ]_ !
T2 12 32 52 4

23[1 1 1 ]_ !
72112 32 5277 4
1 1 _i'(nr: _;r:
12732 527 ala1) s
1 1 1 _;r:
12 32 g2 8
i) Put x = — is a point of continuity
v 1 2l v 1 nlr le 1 nin
f[—)=———,, —COS ——Z—sin—
2 4 e e 21 T M 21
n=pdd n=1
1 ! ! = 1 T
Y
2 4 i 7
n=1
1 = 1 nr | !
—Z—sm =——-
i 1 2 2 4
n=1
I 1 1 1 !
R |-
T 3 & 4
1 1 1 I o1 T
T @)=t
3 4 M1 4



Hence proved

ODD AND EVEN FUNCTION

3. Find the Fourier series of f(x) = x + x* in (—m, m)
Solution:
Given f(x) = x + x7 in (—m,7)
flox) = —x + (=) = —x + 27 = f(x)
Therefore f(x) is neither even nor odd function

We know that the Fourier series is

a, N =
flx) =?E + Z a, CosmnxY —Z b, sinnx ...(1)
=1 n=1

n=

Where

T

ag =% J fla)dx

T
a, =— J Flx) cosnx dx

1

[ flx) sinnx dx
T

o




1 [ -
a, =— J (x+ x7)cosnx dx
T

1 .. isinnx — COS X —sinnxy 1"
—— [+ (B ) -+ 20 (F2E) <o (2]

T T SR A 4 mn

1 .. fsinnm — COSHTT —sin uw
==+ 2 () - a2 () + 2 (=)

T "n " ne 4 n-

_ [E—JT ) [sin[—n:T]J — (1 2m) [—cos[ﬂ—nr{jJ s [—sin["—n;r]J

T 1= s




1 [ i
b, =— J (x + x~)sinnx dx
T

= 2 [+ ) (F2E) (14 2 (ST (2
e (FE2) (220 (22

=%[E:L:' )[—;r—;r:—:r— n]
=_(u)(—27j
b, = —2(-1)

Substituting the values in equation (1) we get

a

a, .
flx)= ?E + z a, cosnx + Z b, sinnx
n=1

n=1



flx) = E —Z :: (—1)"cosnx + Z —i (—1)"sinnx

2X3
n=1 n=1

T T

fla) =J‘;—-—4Z (_i)ncosnx — EZ (0" sin mnx

This is the required Fourier series.

FOURIER SINE SERIES

3) Expand f(x) = cos xin a Fourier sine series in the interval (0, )

Solution:
Given f(x) = cosx
We know that the half range fourier sine series is

flx) =an sin nx e (1)

n=1

Where

b, = %J f(x) sin nx dx

4

|:.

=

T

o

27
n =—J cosx sin ny dx
n =

|:.

_ 2 J [sin (n+1)x+ sin(n — l]xl i

T 2

_1 [— cos(n+ 1)x B cos(n — 1) 1'r

b“
h T nT 1 n—1
E.
_1l]-cos(n+1)m cos(n—1)m cosO cosO
_;r nT1 n—1 n+1 nn—1
| ) e e e T
b, =— — + +
h T n-+1 n—1 n+1 n—1



11— (-1 1= (—1)"?]

m -1 n—1

11— (-1 1= (=171

T (e n—1

:1—(—1)-""1- 1 1 ]

T ln+1 n—1

1—(-1)"'n—1+n+ l]
i (n+1)(n—1)

l—(—l:l'"'_i [ 2n J
T nt—1
[ 4n
b, =4 —1n’
L 0, if nis odd

if niseven

Substituting b&,, value in equation (1) we get

X0 4‘-
flx) = Z Fﬂl]ﬂ'ﬂnﬂx

n=pdd

4 n . _
f(x)=; Z msmni

n=odd
This is the required half range Fourier sine series.
HALF RANGE COSINE SERIES
4) Obtain the half range cosine series for f{x) = (x — 2)* in the interval (0,2).

olution:
Given f(x) = (x — 2)°

We know that the Fourier half range cosine series is

FE) =2+ ) acos0s (1)

n=1



Where

=1 | Fwdx

|:.

2 nmwx
a, = i'_J Flx) ccrsTn’x
o

m|m

[{,_

a, =

L] o

Here [ =2
- _ 233 z
Jil_gj dl_[u]
3
o e
(—-2)°] _8
3 3
2 r FLTX
a, == J[ﬁ.‘—?j cos—dx
2 2
E.

2
2 4
an=[¢}—¢]—2 ——sinnT —0 — 2(— 2) —{J]
nim3 gl
5]
a, ——
nTm-
Substituting these values in equation (1) we get
- 3 AT
f) = 2X3 Zﬂ:rr:ms 2
4 MNXTT
Fe) =+
T

This is the required Fourier series




COMPLEX FORM OF FOURIER SERIES
6) Find the complex form of the Fourier series of f(x) = e™*in-1<x<1

Solution:
Given f(x) = e™ in-1<x<I

We know that the Fourier series is

Flxd = 2 c,e’ T

where
I S AP
C, = Y J flx)e 71 dx
Herel =1,
flx) = Z O etnTE (1)
1
l ) J— R —
-0, = — = T g T TR = o
2
—1
1
1 -
.::'_“ —_— - J E-_I:j-_:“T:I_A_ d::'_
=
—1
1 E,—[i—:'r!.'r]x 1
B El—[l—iﬂﬁ] ~
-1 .
— : [E,—[‘1—:.1'!.'r].:c:|-1
2[1 + inm] -1



1 -1_-—inm -1 _inm
C”:_E[l—iﬂr{][ © e”re™]
1 -1 n 1 n
= S DR
—(=" -1 1
B E[I—Eﬂ;r][ e’]
_ (—lj“ E,i_E,—‘l
[1+ inm] 2
c, = 1(:1'3:-; [sinh 1]
. . . — . (_l)“ : inmx
equation(1)f(x) = Z [l e sinh 1 |e
fi)= smh1 ) [E_ll) |

=00

HARMONIC ANALYSIS

7)Computeupto first harmonics of the Fourier series of f(x) given by the following table

X 0 T/6 T/3 T/2 2T/3 5T/6 T
F(x) 1.98 1.3 1.05 1.3 -0.88 -0.25 1.98
Solution:

First and last value are same. Hence we omit the last value.
When x varies fromOto T
Bvaries from 0 to 2w

We know that the Fourier series is

y==+a,cos8 +bsinb....(1)

X a— ﬂ y cos & sin & veos 2 vsin 8
T



T/6

T/3

T/2

2T/3

5T/6

Sum

0 1.98 1.0
T 1.30 0.5
3
f_:‘? 1.05 -0.5
3
T 1.30 -1
4_:‘? -0.88 -0.5
3
_f? -0.25 0.5
3

45

by =2

T

1 i F vsin &

.

3.013
=

] = 1.004

Substituting the above value in equation (1) we get

v=""+0.37cos8 + 1.0045in 8

i

v=073+037cos® + [.004sin B

This is the required Fourier series

0.866

0.866

-0.866

-0.866

1.98

0.65

-0.525

-1.3

0.44

-0.125

1.12

1.1258

0.9093

0.762

0.2165

3.013



UNIT 11
APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

PART - A

1. What conditions are assumed in deriving the one dimensional wave equation?

2 2
The wave equation is 8—2/ =a’ 8_2/
ot OX

In deriving this equation we make the following assumptions.

(1) The motion takes place entirely in one plane i.e., XY plane.

(i) We consider only transverse vibrations the horizontal displacement of the
particles of the string is negligible.

(iii) The tension T is constant at all times and at all points of the deflected string.

(iv)T is considered to be so large compared with the weight of the string and hence
the force of gravity is negligible.

(v) The effect of friction is negligible.

(vi) The string is perfectly flexible.

2. State the wave equation and give the various solutions of it?



2 2
The wave equation is 8—2/ _a2 9
ot

OX?
The various possible solutions of this equation are
(i) y(xt)=(Ae” +Ae ™) (Ae™ + Ae™).
(i) y(x,t) = (A cos px+ A sin px)(A, cos pat + A, sin pat) .

(i) y(x, 1) = (A + A ) (At + A) -

3. Find the nature of PDE 4u,, +4u, +u, +2u, —u, =0.
This is of the form Au, +Bu,, +cu,, + f (X, y,u,ux,uy)=0.
Here A=4,B=4,C=1.
BZ-4AC=16-4(4)(1)=0.
Therefore the equation is Parabolic.

1. Classify the equation uxx-y4uyy=2y3uy.

Solution:
This is of the form Auxy+Buxy+Cuyy+f(X,y,u,ux,uy)=0.
Here A=1, B=0, C=-1.
B2-4AC=0-4(1)(-1)=4>0.
Therefore the equation is Hyperbolic.

2. Classify: X*Uxx+2XyUyy+(1+y?) Uyy-2u,=0.

Solution:
This is of the form Au+Buxy+Cuyy+f(X,y,u,Uy,uy)=0.
Here A=x?, B=2xy, C=1+y’.

B?-4AC=4xy*-4(x) (1+Y’)



= AxPyP-4 XP-A(X* V)
=-4x°<0.
Therefore the equation is Elliptic.

3. A string is stretched and fastened to two point | apart. Motion is started by

displacing the string into the form y = yosinlz from which it is released at time

t=0. Formulate this problem as the boundary value problem.
Solution:

The displacement y(xt) is the solution of the wave equation.

The boundary conditions are:

i) y(O,t) =0 forall t>0 .

i) y(I,t) =0 forall t>0 .

ii) %(x,o)=o.

iv) y(x,0) = f(X) = ¥, sinlﬁ

. 2. 9%y ,0%
4. What is the constant a“ in the wave equation rey =a pvy
X
(or)
2 2
In the wave equation 8—2’ =c® 8_2/ what does c? stand for?

OX



Solution:

T Tension
M Mass per unit length of the string

a’orc?’=

2
. : : . . u u
5. State the suitable solution of one dimensional heat equation st— =a’ 2—2 .
X

Solution:
u(x,t) = (Acos px + Bsin px)e P,

6. State the governing equation for one dimensional heat equation and necessary
conditions to solve the problem.
Solution:

2
The one dimensional heat equation is st—u =a’ Z—l; where u(xt) is the
X

temperature at time t at a point distance x from the left end of the rod.

The boundary conditions are
i) u(0,t)=k’C forallt>0
i) u(l,t)=kJ)C forallt>0
iii) the initial condition is u(x,0) = f(x),0<x <.

7. Write all variable separable solutions of the one dimensional heat equation

ou_ 0
ot ox?
Solution:

i) u(x,t) = (Ae™ +B,e*)C,e” "

i) u(x,t) = (A, cosAx+ B, sin Ax) C,e ***



i) u(x,t) = (A;x+B,)C,.

8. Write down the diffusion problem in one dimension as a boundary value problem in

two different forms.

Solution:
ou u . i i
—— =a? 8—2 is the one dimensional heat flow.
ot OX

Here a® = % is called the diffusivity.

2

In the steady state d
dx

u
> =0.

9. State any two laws which are assumed to derive one dimensional heat equation.

Solution:

) Heat flows from higher to lower temperature
i) The rate at which the heat flows across any area is proportional to the area and
to the temperature gradient normal to the curve. This constant is
proportionality is known as the thermal conductivity (k) of the material. It is
known as Fourier law of heat conduction.
10. Write any two solutions of the Laplace equation Uy+U,y=0 involving exponential
termsinxory.

Solution:
) u(x,y) = (Ae™ + Ae ™) (A, cos py + A, sin py ).

i) u(x,y)=(A cos px+ A, sin px)(Ae™ + A,e ™).

11. In steady state conditions derive the solution of one dimensional heat flow equation.

Solution:

The PDE of unsteady one dimensional heat flow is



T a2l e (1)

In steady state condition, the temperature u depends only
on x and noton t.

Hence 8_U =0
ot

2
Therefore equation (1) reduces to Z—l: =0.
X

The general solution is u=ax+b, where a, b are arbitary.

12. Write the boundary condition and initial conditions for solving the vibration of
string equation, if the string is subjected to initial displacement f(x) and initial
velocity g(x).

Solution:

2 2
The wave equation is 8—2’ =a’ 8_2/
ot OX

The initial and boundary conditions are
i) y(O,t) =0 .

i) y(l,t) =0 .
ii) %(x,0)=g(x).

iv) y(x,0) = f(x)

13. Write down the governing equation of two dimensional steady state heat equation.
Solution:
o’u  o’u

The required equation is —-+—-=0.

x> oy?



14. The ends A and B of a rod of length 10cm long have their temperature distribution
kept at 20°C and 70°C. Find the steady state temperature distribution of the rod.
Solution:

The steady state equation of one dimensional heat flow is

=0 (D)

The general solution of equation (1) is u(x)=ax+b ..... (2)
The boundary conditions are u(0)=20, u(l)=70.
Put x=0 in (2) we get u(0)=a(0)+b

=b=20
Put x=1 in (2) we get u(l)=al+b

70=al+20

al=50

a=50/1
Therefore equation (2) = u(x)=50x/1+20

Here I=10 cm
Therefore u(x)=50x/10+20
u(x)=5x+20.

15. Write down the different solutions of Laplace equation in polar coordinates.
, 0°r or 9l
r +r + =

0.
00> 00  00*

Solution:

i) u(r,d)=(C,r* +C,r ")(C, cos p6+C,sin po)



i) u(r,0) = (C, cos(plogr) +C,sin(plogr)(C,e” +C,e ™)
i) u(r,0) =(Cylogr+C,)(C,,0+C,,).

16. What is the general solution of a string of length | whose end points are fixed and
which starts from rest?

Solution:

= . Nax nzat
y(X,t) = Z Bn Sin TCOSI—.
=1

17. How many boundary conditions and initial conditions are required to solve the one
dimensional wave equation?

Solution:

Two boundary conditions and two initial conditions are required.

PART B

1.A string is stretched and fastened to two points x = 0 and x= | apart. Motion is started by
displacing the string into the form y = k (I x — x* ) from which it is released at time t=0. Find

the displacement of any point on the sting at a distance of x from one end at time t.

Solution: The ODWE vy, =c?y,,
Solution:  y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)
Boundary and initial conditions are (i) y(0,t) = 0 (ii) y(l,t) =0
(iii) y, (x,0)=0 (iv) y(x,0)=f(x), 0<x <.
Using Boundary and initial conditions:

) y(0,t) = 0, put x=0
A(Ccos pct +Dsin pct)=0 .. A=0



*. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)

i) y(l,t) =0, put x=I
Bsin pl (Ccos pct +Dsin pct)=0 =B =0 Bsin pl =

nz
=pl=nr Sp=—
. Suitable solution  y(x,t)= BsmT (Ccos nTﬂCt +Dsin nI—ﬂCt)
i)y, (x,0)=0
Bsin % 1 (C(-sin n—mt) +Dcos n—ﬂCt)
| nmc I I

PUt t=0= Bsm# ! (Dcoso)=0 D=0
nzc

nzct

*. Suitable solution y(x,t)=Bsin n:zx Ccos

General solution: y(x,t):z B, sin@ cos nTﬂCt

n=1
iv) y(x,0)=f(x), 0<x <.
Here t=0= > B, sin# = f(x)= k(lx - x?)
n=1

By Half range sine series:

|
Bn:%jf( )sm%dx
0

2k nzx 1Y . nax nax )’
—(Ix—=x ) cosT+(I—2x) — smT—Z —
Nz



el 4]
_ Zl—k{z[n'—ﬁf[—(—l)" +1]}

o N

n’z®
_ ﬁl‘;n odd
0,n=even
Required Solution:
Y(xt)= i kI2 'n:zxcos n;lzct
n=135 N

_ 8K 1> & (2n +D)7x _ (2n+1)ct
s cos
(2n +1) | |

72' n=0

2.A taut string of length 2l is fastened at both ends . The midpoint of the string is taken to a

height b and then released from rest in that position. Find the displacement of the string at
any time.

Solution: let L=2I|

L
O<x<—
Equation of AC: 2

By two point formula: at (0,0) and (% ,b)

Equation of CB: %<X<L



By two point formula, at (% ,b)and (L,0)

_ 2b(L-x)
YmL
2—EX,O<X<%
-'-y(X,O): _
2b(L x),k (<L

The ODWE vy, =c?y,

Suitable solution y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)
Boundary and initial conditions are (i) y(0,t) =0 (i) y(I,t) =0
(i) y,(x,0=0  (iv) y(x,0)=f(x), 0<x <.
Using Boundary and initial conditions:

i) y(0,t) =0, put x=0
A(Ccos pct +Dsin pct)=0 .. A=0

.. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)

i) y(I,t) =0, put x=I
Bsin pl (Ccos pct +Dsin pct)=0 = B = 0 Bsin pl =0

nz
=pl=nx Sp=—

.. Suitable solution y(x,t)= Bsin# (Ccos nact +Dsin nTﬂCt)

V) y(x0)=0

nzx |

Bsin—— —— (C(-sin n—ﬂCt) +Dcos n—ﬂCt)
| nac I I



Put t=0= Bsin % L(DcosO):O -.D=0
I nxc

nct

.. Suitable solution y(x,t)=Bsin n:zx Ccos !

. < . N n
General solution: y(x,0)= "B, smTﬂXcos I—ﬂCt
n=1

vi)  y(x,0)=f(x), 0<x <.

2bx L
© nax T,O<X<—
Here t=0= > B, smT:f(x): (L) L
n-1 —1 ,—<X<L

Half range sine series:

N

Cosnﬂ Sll"lni7ZX
=22 L | -——L,
L L nz (nﬂj
L
L 0
cos 7% sin X
22b L L
L2 x| - (|-
22 (L0 -—L |-




_ & D gin T
ﬂzﬂz 2

Required Solution:Put L=21

= 8b Nnzx nzct
x,t sm—sm—cos —
yon= énznz L L

= 8b Nz nzx nzct
z sm—sm—cos bt

=~ n?r? 21 21

3.If a string of length 'l is initially at rest in its equilibrium position and each of its points

. X
is given the velocity (%) =V,Sin® ET 0 < x <. Determine the displacement y(x, t).
t=0

Solution :

Let 1=20
The ODWE vy, =c?’y,,

Suitable solution y(x,t)= (Acos px +Bsin px)(Ccos pct +Dsin pct)

Boundary and initial conditions are (i) y(0,t) =0 (i) y(1,t) =0
(i) y (x,0=0 (iv) y, (x,0)=f(x) :vosin3lﬁ

Using Boundary and initial conditions:

i) y(0,t) =0, put x=0
A(Ccos pct +Dsin pct)=0 .. A=0

*. Suitable solution y(x,t)= Bsin px (Ccos pct +Dsin pct)

i) y(l,t) =0, put x=I



Bsin pl (Ccos pct +Dsin pct)=0 =B =0 Bsin pl =

nz
=pl=nrx .-.p:I—

*. Suitable solution y(x,t)= Bsm— (Ccos nl_ﬂct +Dsin n—ﬂc'[)

i) y(x,0)=0
Bsin# C=0 =c=0

nzct

. Suitable solution y(x,t)= Bsin n:zx Dsin

General solution: y(x,t)= > B, sm@ sin 17t

n=1 I

iv) ¥, (x,0)=f(x), 0< x <.

y. ()= > B, sin n:zx n:zc cos leCt

y, (x,0)= ZB smn:ZX % :vosin3|z

/- SE
TBlsmT+TstmT+TBSSm—+...:— 33|nT—sm|—

A . aX 2aC. . 272X 3aC_ . 3mx vo[ 37ZX:|
I

TB=T0 STB=-2 B,=B,=B=.=0

Required Solution:

y(x,t)= B, smlﬁsm ;cht+ B, sm3—7zxsm szt

3v, 7X zict v, . 3mx . 3ct
=—2C sin==sin == - sin—-sin

Anc | | 127C I I




4.A rod 30 cm long has its ends A and B kept at 20°C and 80°C respectively until steady
state conditions prevail the temperature at each end is then suddenly reduced to 0° ¢
and kept so. Find the resulting temperature function u(x,t) taking x=0 at A.

Solution:

Let =30  Insteady state Us =0

. b-a
In initial temperature u(X) :[I—jx +a

u(x,0)= g +20

After change ODHE: U; = azuxx
Suitable Solutions:
u(x,t)= (Acospx + Bsin px) e "
Boundary and Initial Conditions:
60x

Du©ED=0  u(Y=0 i) u(x0)= > +20

Using Boundary and initial conditions:

i) u(0,)=0
Here x=0 = u(0,)= Ae *P*
S A=0
%t

2
Suitable solution: u(x,t)= Bsinpx € “ "

i) u(l,t)=0



Here x=1 = Bsin ple """ =0
nz
Sinpl==0 =Ppl=nm .. p:T

aznzﬂztz
n -
Suitable solution: u(x,t)= Bsin Tﬂx e "

2
—a’n’z%t
|2

Cn i DX
General Solution: u(xt)= 2B, sin - ¢
n=1

iii) u(x,0)=f(x)= @+20

Zanin# e’ $+20

By Half range sine series,

|
zjf sm—dx
0
== (60" 20)sin 7% dx
|

cosn—ﬂx sinn—ﬂx
20X -

-Scafartz( Lol L]

2L a0 +20]= 22 fi-a¢-0y]




Required Solution:

2
—a®n?z?t

;wm:§ga4+wnm%ﬁe'z

2
—a’n’z?t

_ @2(1—4(—1)”)sin N7X @ 900
T 30

5. An infinitely long rectangular plate with insulated surface 10 cm wide. The two long
edges and one short edge are kept at 0° temperature, while the other short edge x=0 is kept
at temperature given by u=20y, 0<y <5, u=20(10-y),5<y<10. Find the steady state
temperature in the plate.

Solution : Steady state two dimensional heat equation:

Infinite plate extended in x-direction : Let I1=10
I Boundary Conditions
Du(x,00=0 ii)ux)=0

|
20y,0<y<—
yusy 5

iii) u(e0,y) = 0 iv) u(0.y) = f(y)= ,
20(I—y),§£ygl

Il Suitable Solution:

u(x,y)= (Ae‘pX +Be pX)(Ccospy + Dsinpy)

Using boundary conditions:

) u(x0) = (Ae™ +Be™Jc =0
C=0

Suitable Solution:



u(x,y)= (Ae‘pX +Be px) Dsinpy

i) u(xl)=0
Dsinpl=0  sjnpl==0 = pl=nn -"p:nl—ﬂ

Suitable Solution:

nzx nzx

u(x,y)= [Ae' + Be'J D sin@

iii) u(o0,y) =0
Be"=0=p=

nzx

General Solution: u(x,y)= ZBe o smT”y

n=1

) 20y,0<y<—

(iv) u(0y) = f(y)= | 2
20(I—y),§s y<I

s nx 20y,0< ysl

D B, sin——=1f(x)= | 2

= ! 20(1-y) 5 < y<|

Half range sine series:

By sz sm—dx

O Ly —

40
|

O'—.M\—

|
xsin%dxq(l-x)sin%dx
|

2



_ &0l 2 sin”
ﬂ27Z'2 2

Required Solution:Putl=10

nzx

= 800 nr — -
uxy)= D55 Sln—ﬁe 0 gin A

2_2

= N 10

—(-D|-

2

&)



UNIT IV
FOURIER TRANSFORMS

PART - A

1. State Fourier integral theorem.

If f(x) is piece-wise continuously differentiable and absolutely integrable in (- o0, x)
then

f(x):ij. J' f (t)e*"Ydids (or) equivalently

1 00 00
f (x):;j J' f(t)cosA(t—x) dtdA.
0 —o
This is known as Fourier integral theorem or Fourier integral formula.

2. Define Fourier transform pair (or) Define Fourier transform and its inverse transform.

The complex (or infinite) Fourier transform of f(x) is given by

Ff(x)] = F[s] = Tf )& dx

ﬁ\H
3

Then the function f(x) is the inverse Fourier Transform of F(s) and is given by



F[s]e™dx.

-
Vor =,
F[ f(x)] and F*[F(s)] its also called Fourier Transform Pairs.

3. Show that f(x) = 1, 0 < x < « cannot be represented by a Fourier integral.

[e¢}

ﬂf (x)]dx =.[1dx=[x];° — o0 and this value tends to o as X — oo,
0 0

o0

ie., J'lf (x)dx is not convergent. Hence f (x) =1 cannot be represented by a Fourier
0

integral.

4. State and prove the linear property of FT.

Stt:
Flaf(x)+bg(x)]=aF[s]+bG[s]
Proof:
F[f(x)] = F[s] =\/L_T X)e™ dx
F[af(x)+bg(x J_I[af )+bg(x)]e™dx
_%Taf( 'Sxdx+—Ibg x) e dx
:J%Iof( e dx + —_[ x) e dx

=aF[s]+bG[s].



5. State and prove the Shifting property of FT.

Stt:

F[ f(x-a)]=e"F[s].

Proof:

F[f(x)] = F[s] = Tf )& dx

8
ﬁ‘

F[f(x-a)] :%j f (x—a)e™ dx

—00

Put x—a=y = x=y+a

dx = dy when x = o0, y=00
IS y+a l T is |sa
=——| f(y)ee
Ty - )
eisa L _ |sa L
= f(y)e™d e'SX dx
\/ZJ; (Y) y \/_J;
6. State and prove the Change of scale property of FT.
Stt:
F[f(ax) ] =1FF}, a>0.
a |a
Proof:

F[(x)] = F[s] = %if(x)ei“dx

when X = —o0, y=-—0

dy

=e" F[s].



0

F[f(ax)] = % I f (ax)e™ dx

—00

Put ax=y = x=2
a

adx=dy ie, dx=— when X = o0, y=00
a

8. State and prove the Modulation property of FT. (OR) If Fourier transform of f(x) is
F(s).



Prove that the Fourier transform of f (x)cosax is %[F(s—a)+F(s+a)].
Stt:
F[f(x cosax]_—[f (s+a)+f(s—a)] where f(s)=F[f(x)].
Proof:

F[ f(x)cosax] _[ ) cosaxe™ dx

|s+axdx+_ J'

=%f(s+a)+%f(s—a) =%[f(s+a)+f(s—a):|.

9. What is meant by self-reciprocal with respect to FT?

If the Fourier transform of f (x) is obtained just by replacing x by s, then f (x) is called

self-reciprocal with respect to FT.

Example: f(x)=e ?



10. Prove that Fc[f(x)cosax]=%[Fc(s+a)+Fc(s—a)] where F, denotes the Fourier

cosine

transform f (x).

) 2%

The F.C.Tis, F.[ f(x)]= f_ f q
e is, F.[ f(x)] ”E[ (X) cos sx dx
200
F | f = [=|f d
c[ (x)cosax} 1/7[_([ (x) cos ax cos sxdx

= \/ZI f (X) cos sx cos axdx
T 0

- \/ZT f (x) E[cos(s +a)X +cos(s —a)xJdx
7Ty 2

= EH\/EJT f (x) cos(s +a)xdx + (\/zﬁ f (x)cos(s — a)xdx}
2 T )y T )

=%[Fc(s+a)+ Fe(s—a)].

ar[1(9]

11. Prove that F,[x f (x)]= =

wkt F[ f(x)] =\/ZT f (x)sin sxdx
4 0



dR[f(x)] _4d NZT f (x)sin sxdx}
ds ds | N7y
= % H f (x) %(sinsx) dx} :\/%Dj f (x) cossx.x dx}

:\/% T [x f(x)] cossxdx = FC[X f (X)]

12. Define Fourier cosine transform (FCT) pair.

The infinite Fourier cosine transform of f(x) is defined by
Flf(x)]= \/ET f (x)cos sx dx
T 0

The inverse Fourier cosine transform F, [f (x)] is defined by

f(x):\/%IFc[f (x)]cossxdx.

F.[ f(x)] and Fc‘l[FC (f (x))] are called Fourier Cosine Transform Pairs.

cosx if O<x<a

13. Find the Fourier Cosine transform of f(x) = { .
0 if x>a

We know that

Fc[f(x)]:\/%]if(x)cossxdx :\/%-Icosxcossxdx

0



N[
O ey

[ cos(1+5)x+cos(1-s)xdx

"sin(L+5s)x . sin(l—s)x}a
1+s 1-s

g‘
I

0

(sin(1+ s)a, sin(l—s)a}_(oJro)}

1+s 1-s

N
3

(sin(1+ s)a . sin(l—s)a

provided s=1 ; s=-1.
1+s 1-s

NG
3

14. Find the Fourier Cosine transform of e ,a>0.

—ax

Given f(x)=e

o0

We know that F.C.T is, F,[ f (x)]= \/EJ' f (x)cossxdx
T

0

:\/Z_[eaxcossxdx But Ie‘axcosbxdx= Za -
T 0 a“+b

0

Here a=a,b=s

a 2
Fc[e’ ]:\/;(aziszj' a>0.

15. Find the Fourier Cosine transform of e™.

We know that



Fc[f(x)]=\/§If(x)cosaxdx

Fle™]= \/%Te‘x cosaxdx = \/%Ljaz } .
0

16. Define Fourier sine transform (FST) pair.

The infinite Fourier sine transform of f(x) is defined by

FLf(%)] :EI f (x)sinsxdx.

The inverse Fourier sine transform of F,[ f (x)] is defined by

f (x):\/%l9 F.[ f(x)]sinsxdx.

F.[f(x)]and F*[ F,(f(x))] are called Fourier Sine Transform Pairs.

17. Find the Fourier Sine transform of e**.

The FST is, Fs[f(x)]:\/%_[f(x)sinsxdx. Here f(x)=e".
0

Fle*]= \/?jie‘3X sin sxdx
72-0
_ P[;}
N x| s? +32

Formula F,[e™ |= \/E.Teax sinsxdx .
4 0



18. Find the Fourier Sine transform of f(x)=e™.

We know that F.[f (x)] = \/z j f (x)sin sxdx
T 0

Fs[ex]:\/z_[eX sin sx dx
T 0

:\/Z{ > 2} [ °.°.[e‘axsinbxdx=
| 1+S 5

19. Find the Fourier Sine transform of 3e*.

Let f(x)=3e™

a2

Wkt F[f (x)]z\/gjf f (x)sin sxdx =\/gofge—2x sin sx dx
0

0

2 e—ZX
| 4+s

L ]2[ s } _\/z{ 3s
| s?+4 | s?+4

20. Find the Fourier Sine transform of i
X

2

We know that

(- 2sinsx—scos sx)}

|

0

b
+b2]}




FLf(x)]= \/g]j f (x)sin sxdx

FS[E} = \/zj.lsin sxdx
X Ty X

Letsx= @ X—>0=6—->0
sdx=d@ X=>0=>60->0
= ET[Ejsmgd_e :\/ZT_dSine 0 = E|:£:| = E
o\ 0 ds ry 0 | 2 2

21. State the Convolution theorem on Fourier transform.

If F[s] and G[s] are the Fourier transform of f(x) and g(x) respectively. Then the

Fourier transforms of the convolution of f(x) and g(x) is the product of their Fourier

transforms.

FLE()*9(x)]=F(s) G(s)
=FL1(0)] Fla(x)].
22.State the Parseval’s formula or identity on Fourier Transform.

If F[s] is the Fourier transform of f (x), then I|f(x)|2dx = J'|F(s)|2ds.

—0

PART B

1. State and prove the convolution theorem for Fourier Transforms.



Statement:

If F[s] and G[s] are the Fourier transform of f(x) and g(x) respectively. Then the

Fourier transforms of the convolution of f(x) and g(x) is the product of their Fourier

transforms.
FLE()*9(x)]=F(s)G(s
=Ff(x)] Fla(x)]:
Where (f *g)x= jf(t)g(x tdt

PROOF: By convolution of two functions:

(f =g)x \/_J.f(t)g(x t)dt

The Fourier transform of f =g is

F[f*g]:%?(f*g)eisxdx

_ % T{% T{f H)g(x —t)dt}eisxdx

1 T T isx
=Z:[Of(t)dt:[og(x—t)e dx
Put u=x-t du=dx X=0 — y=0 and X=- 00 Yy=-©

_ 1 T K is(u+t)
F[f*g]_Z:[of(t)dt_J;g(u)e du

= % | f(t)e'stoltT j g(u)e™du



FI( f *g)(X)]=F(s)G(s)

_ _ a’—x%in|x<a
2.Find the Fourier transform of f(x) = )
0, in|x>a

Hence evaluate j (wjdt :%
0

: _ a’—x’,in|x/<a
Solution: Given: f(x)= _
0, in|x>a

F(S) — isxdx

%Tf(x)e

= _\/;_ J.(aZ _XZ)eisde
T Za

! J‘(a2 — x?) cos sxdx
271 %

2 _(Zacosas | 2sin asj_0
V21 s? s°

&‘

4 Ksin as —ascos asﬂ
\N2r s

2 (sin as — as cos asj

2

3. Show that € 2 is reciprocal with respect to Fourier transforms
Solution:

Fourier transform:



Ff(X)] = % ]0 f(x)e™*dx

XZ

1% X
=—— |e 2e™dx
\/272'_'"

00

X2 .
——+ISX
2 dx

_LTe
=l

[()i/;)jzeszzdx

— l Te_
Jor 2,
y—X;iS dy—idx X=w=Yy=0 and X=—o=y=—0
J2 V2

F(s) = % Ie‘yzeT\/Edy

S2

S %,
=e 2 ——=2|eVdy
L

f(x)= e 2 jsself reciprocal with respect to Fourier transform.

_ _ 1-|x|if x| <1
4. Find the Fourier transform of f(x)= 0 i |x|>l

N
J’[ﬁj di="
A 3

Solution:

. Hence deduce that

Fourier transform:



FIf(x)] = ]0 f (x)e™dx

—0

- %J‘(l—|x|)eisxdx

N

((1_ )smsx_( 1)( cossxD
\/7( cossx j
2 (1-cos sx
F(S):\g( s° J

By parseval’s identity, ﬂ F (s)|2 ds = ﬂ f (x)|2 dx

2 1
= I(l— |X|) cos sxdx
0

_[|f(x)| dx= :fl(l 1| dx 2.[1 X )’ =—§( —x)3£
21, w}_ 2
——=e-xp}= 3
FGs)f _3{1—0035}2 _ 8sin’(s/2)
ozl §° Y s’

|F(s)| gs=8 ﬂsm (s/Z)} _;GT[sm (S/Z)}

Put t=s/2 2t=s 2dt=ds

Ss>0=>t—>0ands >0o=t >

_167|sin"(s/2) _ 27| sin’t
‘zo{<mf }“ EJ{MAFt




x forO<x<l

5. Find the Fourier cosine transform of f(x)=<2—-xforl<x<?2
0 forx>2

Solution: F[f(x)]= \/zoji f (x) cos sxdx
7 0

FLf(X)]= \/%ﬁ X COS SxdX + j' (2—x)cos sxdx}

— . 1 . 2
_ g{ L Sin sx+coszsx} +[(2—x)sm SX—(—l) coszsx} }
s s° S s°

~ 2{_sins+coss 1 cos2s sins+coss}}

| s s s ¢ S s?

_\/Z Ycoss_cosZs_i}
7|l s 2 s

6. Find the Fourier cosine transform of e *

Solution:

R 1=| 2] () cossic

F.Lf(X)]= \/% I e cos sxdx
0



_ 21 Te—azxzeisxdx
T —o0

\E > RP Te—a2x2+isxdx

—00

Put t=ax— s dt=adx
2a

X—>—w0o=t——wandx >0o=t —>w©

:%e [45\ }R |:>J‘e*t2 ﬁ %e{;z}éR.P\/}

AUOE %e{“;}

—ax

7. Find Fourier sine transform of e *,a >0 and deduce that I 5 sinsxdx = %e

s+a’

Solution:

L 1= 2 [ Fosinsos

-]

By inversion formula,

f(x)= \/%T F.[f (x)]sinsxds




2712 s :
—J' —Luaz}mnsxds:f(x)

j[ }smsxds_—f(x)_—eax a>0
L s?+a’ 2 2

8. Evaluate .[

x +a Xx +b?

) using Fourier Cosine Transform.

Solution: Fc[eax]:\/z{ > a 2}
|l s*+a

By Parseval’s identity

[F.6)6.(s)ds =] ()

g(x)dx

o0 b o0
ds =| e e dx
!\/;L +a’ }\/7Lz+b2} ;';

2abT ds

1
7 3 (s +a’) (s’ +b?)  —(a+h)

dx

put s=x

T 1

!(xz +a?)(x2 +b?)  2ab (a+b)

9. Evaluatej‘ 5 dx 5
o (X5 +D)(x° +4)
Solution:
Provingj 5 dX2 -7 1
o (X*+D(x"+4) 2ab (a+b)

Put a=1 and b=2

7 oz

!(xz )X+ QMEE) 12



o 2
10. Using Parseval’s identity evaluate: J.&Xz
0 (X2 + az)

Solution;

Consider the function f(x)=e™

Rle ™= \/g[sz i a’ }

By parseval’s identity, j [F.(s)]?ds = j [f (X)]Pdx
0 0

(o e

| V[ s*+a? .

2% S2 {EZax :|°C
M7 ds = put s=x
% (SZ + 3.2) -2a 0

UNIT V

Z -TRANSFORMS AND DIFFERENCE EQUATIONS
PART - A

YA
—a

1. Prove that Z[an]= Z is ‘Z‘ > ‘a‘ :

We know that z {X(n)} - ix(n)z_n

n=0



I
[EEN




_1 (Z_—ljz _E{LT e
7|\ 2 Czlz-1 (z-17
3. Find z{an }
We know that £ {X(n)} = Z X(n )Z -

Z{a”}z ia”z "

-1 o

= Za_nz_n+zanz—n
N=—co n=0

:[ ...... +a’z® +a%z? +az]+ Z[an]

{ z[a”]:?za}




z

n
We know that Z[a ]:
Z—a

Z[e_an]: Z[(e_a )n]:$ Here =€ °.

5. Find Z[a"* ],

z

n
We know that Z[a ]:
Z—a

Z[a”‘l]zz[a”a‘l]

=a’z[a"|

n(n+1) " het

1= A(n+1)+B(n)
Put n=0 we get, 1=A

Put n=-1weget, 1=-B (ie) B=-1




1 4
We know that Z|:_} - Iog -

7. Find Z[an CoS ne]

We know that Z[an f(n)]: F{—}

Z

n

1|1 [t
n(n_|_1) = n 1Sl pgq | by linearity

z-1 z-1

Z
—(1-7)log—-—
(1-2)log_—.

z
a

a" cosnd|=[z[cosnd]]

z—>z/a

z(z—cos @) }
| 22 -2zc0s0+1], ,,,,

Z[Z—cose}
ala

2
YA yA
——2—-C0s6+1
a’ a
z|z—-acos 4]
z? —2azcos@+a’




8. Find z{a_} _
n!

Sol:
n Z
We know that Z[a f(n)]: F{a}
Zla" 1 7 1
n! n!— z—>zla
1/z |
= [e lz—z/a
1
_ e(z/a)
a
=e z
9. Prove that Z[nf (n)]=_2% F(Z).

Give., F(Z) = Z[f (I’])]



10. Find Z(n?).

d
We know that Z[nf (n)] =-Z E F(Z)

Z[n?]=z[nn]= —z%[z(n)]

fz{(z —ZH

:_{c—1)@)_—;)[3@—1)1}




11. Find the Z-transform of {nC, }.

=1+nC, 27 +nCz7° +.vrrerne, +nC, 2~

This is the expansion of binominal theorem.

=[+zt)

12 Find Z[e %],

We know that £ [e_at f (t)] =Z [f (t)]z—>zeaT

zlet?|=z[t? || .o

T 2ze’ (zeT +1)
(zeT —1)3

13. Define Unit Sample sequence.

The unit sample sequence 5(”) is defined the sequence with values

1 for n=0
0 for nz0

14. Define Unit step sequence.

The unit step sequence u(n) has values.

1 for n>0
0 for n<O



15. Find Z [2” s(n- 2)]

z[2"5(n-2)|=2z[s(n-2)lz>,,,

16.1f Z[f(n)]= F(2),, then T(0)=lim F(z).

Z—>0

2[1())=3 f ()

[f(o)+w+ f(2)+ ..... }

lim Z[f(n)]=lim

Z—>0

lim F(z)= f(0).

X—»00

17. Find the Z-transform of nanu(n).

n 4 d 4
Z[na u(n)]_z ' dz {;} by def . of u (n)

= Z_l

dj‘l [1 —az™ ]_l

=z} (-1)1-az*)’[-a]



=az (1 az- )2

o azt

B (1—az‘1)2 '

18. Define convolution of sequences.

i) The convolution of two sequences {x(n)} and {y(n)} is defined as

.9’
II

o0
Z f |f the sequences are non — causal and

b. {X(n)* Y(n)} =) (K)g (n - K) if the sequences are causal.

K=0

ii) The convolution of two functions f(t) and g (t) is defined as

* (t)} = z f(KT )g(n - K)T, where is T is the sampling period.
Ko



PART B

1. Using the Z transforms, Solve u,,., + 3u,., + 2u, = 0 givenu, = 1,u, = 2.

Solution:

Given .., +3u,., +2u, =0
Z[ Upso] + Z[3up44] + Z[2u,] =0
[z U(z) — z* u(0) — zu(1)] + 3[zU(z) — zu(0)] + 2 U(z) = O

(z*+3z4+2)U(®)- 2%-22-32=0 [up=1u, =2]

_ =45z
U@ = 2243242
_ =(=+E)
U@ = 28 +3z42
Uizl _ (z+5) _ 4 B (1)
z - |:z+1:||:3+ 2} - |:z+j_:|T|:z+2:| ---------------

Then z+5 = A(z+2) + B(z+1)

Put z = -1, we get Put z = -2, we get
4 =A 3=-B
A=4 B=-3

Uizl _

(1) - [':zj-ﬂ] -[':zj- 2:']

=

© U@ =43




Z [u(n)] = 4[—]-3[=]

(=z+

u(n) = 4z~ [51-32 5]
= 4(—1:]”- 3(_2):4

= [4-3(2)] (-1)"

2. Solve the difference equation y(n+3)—3y(n+1)+2y(n) =0

giventhaty(0) = 4,y(1)=0andy(2) =8

Solution:
Given y(n+3)—3y(n+ 1)+ 2y(n) =0
Z[y(n+3)] -3Z[y(n+ )]+ 2Z[y(n)] = 0

[2°Y (2)—z°y(0) — 2% y(1) — zy(2)] - 3[z¥(2) — 2¥(0)] + 2¥(z) = 0
[2%¥(z) — 4z — 8z] — 3[z¥Y(z) — 42z] + 2¥(2) = O [¥(0) = 4,¥(1) = 0,¥(2) = 8]
[2° —3z+2]Y(2) — 42 —8z+12z=0
[2° —3z+2]¥(2) — 4z —4z =0
[2° —3z+ 2]Y(2) = 42° — 4z

az%— 4z

=¥—3z+32

Y ()=

4z(="—1)
T (z-1)% (=+2)

_ (z+1ii=z—1)
T iz-1) =+

_ 4z(z+1)
- (z—1)(=z+2)

viz) _  4l=z#1) _ A + B
-4 (z—1)(=z+2)  =-1 =42




4(z4+1)=A(z+2)+B(z—1)

Put z=1,we get Put z =-2 , we get
8=3A -4=-3B
A=8/3 B =4/3

¥ _Bf=],3(=
3 {3—1}+3 {z+2}

Zlyml = ${5) + )

=+2

ym =2z {5+ ()

=+2

=3 (" +3(-2)"

3. Using Z transforms, Solve u,,., — u, .y ~ 6u, = 4" given thatu, = 0, u; =1

"

Solution:

GiVen Upsy = Upsq T 6u, = 47
Z[ 0] = Zuyeq] + 6Z[u,] = Z[47]
[22U(z) - 22 u(0) — zu(1)] - 5[zU(2) — zu(0)] + 6U(2) = =
2252+ 6)U (2= [ =0, u; = 1]
::—5:—6)U(z):z+£

(z—3)(z—2) U(z) = Z==2=

z—4

(z—3)(z—2) U(z) = ===

Z—%

UI:Z) - =(=z-13)

(z—3(=z—2)(=z—4)



U(zj = |:_3_:_'-|:_3— )
Ui=d _ 1
= B (z—2)iz—4)
Uizl _ 1 _ 4 =
e e il et SN (1)

1 =A(z—4) + B(z—2)

Put z = 2, we get Put z = 4, we get
1=-2A 1=2B
A:-% B:%

@ U@ = -]
Z [un)] = -3l
U(n) =" %E_i [':sz."] - %z_i[hiéf']

= 22"+ (9"

4.Using Z transforms, Solve ¥,:5 + 6¥,.4 + 9y, = 2" giventhaty,=0,y, =0
Solution:
Given ¥,., +6¥,., +9y, =2"
Z[ Ypia] + 6Z[ypsy] + 9Z[y,] = Z[27]
[22¥(2)— 2% y(0) —zy(1)] + 6[zY(2) — zy(0)] + 9Y(2) = %

(Z2+62+9)Y (== Yo=0,y,=0

(Z2+624+9)Y (@) ==

(z+3)2Y (2) =

z
Z—2



Y(z) = =

(z—2)i=z+3)*

¥(z) 1
= B (z—2)(=+3)%
¥z} 1 A B c
= = (1)
= (z—2(=+3)2 (=z-2) (=43} (=z+3)2

1=A0E+37+B(Ez-2)(z+3)+c(z—2)

Put z = 2, we get

Put z = -3, we get
1 =25A 1=-5C
-1 __1
A= 25 C= 5
¥vi_ 11 11 1 1
(1) = 25z-2 25z+3  5(=z+3)°
- = _1= 1 =
Y (2) T 25z-2 25z+3  5(=+3)F
1 =z 1 =z 1 =
- g gzl ——
v =527 L5l m 557 ] [[z—|- 33‘]

5
ie,

I 1 ! 1 ! 1 "
y(n) =5c @ -2 (=3)"+ (=3

5. Find Z{sz—b)]

Solution:

Equating z* co-eff.
on both sides, we get

0=A+B



=a" *p"

— iambn—m — bn i(ﬁ]
n=0 m=0 b

a n+1
5) -
—p"

being a G.P
a
|
b
an+l _bn+1
 a-b
a" -1
. l+a+a’+..+a" =
Note: |: a—l

6. Find Zl{m]

Solution:
) _

sal T |_u[ 2z
LZ—Q&—3J {2—12—3_

=l
z-1 | z-3

=1"*3"

N

— ilmsn—m — Bni(lj
n=0 m=0 3



n+1
)
=3" 1—being aG.P

Note:
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