FMS Actual Paper - 2007 (Memory Based Questions)

1.	A straight line is perper Which of the following	ndicular to the straight lir gives its equation?	ne 2x + 3y = 5 and it pass	ses through the point (1, 1).
	a. $2x - 3y = 1$	b. $2x + 3y = 2$	c. $3x + 2y = 1$	d. $3x - 2y = 1$
2.	A straight line passes t is perpendicular to the	hrough the point (3, 2) a straight line x + y = 3. F	and is perpendicular to th Find its equation.	he straight line $x + y = 3$ and
	a. x + y + 1 = 0	b. $x - y - 1 = 0$	c. $x - y + 1 = 0$	d. $x + y - 1 = 0$
3.	The vertices of a triane following is correct abo	gle lie on points (0, 4), (out this triangle?	3, 5) and (−1, −1) in the	X – Y plane. Which of the
	a. It is an isosceles rig c. It is an equilateral tri	ht triangle. angle	b. It is a right triangle.d. It is an obtuse triang	ıle.
4.	Find the length of the a	ltitude of an equilateral t	triangle whose sides hav	ve a length of $3\sqrt{3}$ units.
	a. 8.5 units	b. 6.5 units	c. 4.5 units	d. 2.5 units
5.	If a = $\log 2$, b = $\log 3$ ar	nd $c = \log 7$ then find the	value of \log_67 in terms	of a, b and c.
	a. $\frac{b}{a+c}$	b. $\frac{c}{a+b}$	c. $\frac{a}{b+c}$	d. None of these
6.	If the real number x lies a. $(x - 2) (x - 3) = 0$	s between 2 and 3, then	which of the following exb. $(x - 2) (x - 3) < 0$	xpressions is valid?
	c. $ x-2 > x-3 $		d. None of these	
7.	Solve for all values of x	for which $6 + x - x^2 \ge 0$	1	
	a. $-2 \le x \le 3$	b. $2 \le x \le 3$	$c3 \le x \le 2$	$d3 \le x \le -2$
8.	Evaluate the expressio	$n \frac{1^3 + 2^3 + 3^3 \dots + 12^3}{1^2 + 2^2 + 3^2 \dots + 12^2}$		
	234	224	324	335
	a	b. <u>35</u>	c. <u>35</u>	d. $\frac{1}{24}$
	< 100			
9.	Evaluate $\left(\frac{1+i}{1-i}\right)^{i}$			
	a. 0	b. 1	c. –1	d.100

c. $x^2 - 6x - 7 - e = 0$ If the equations $x^2 + ax$ (a + b). a. 0 Given the following thr unity.} $a\omega^2 + b + c\omega = x$ $a + b\omega + c\omega^2 = y$ $a\omega + b\omega^2 + c = z$ a. 0	x + b = 0 and x ² + bx + a = b. 1 ee equations, find the va (i) (ii) (iii) b. 1	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c1 alue of $x^3 + y^3 + z^3 - 3xy^3$	nmon, then find the value of d. 2 z{Here, ω is a cube root of d. –1
c. $x^2 - 6x - 7 - e = 0$ If the equations $x^2 + ax$ (a + b). a. 0 Given the following thr unity.} $a\omega^2 + b + c\omega = x$ $a + b\omega + c\omega^2 = y$ $a\omega + b\omega^2 + c = z$	 a + b = 0 and x² + bx + a = b. 1 ee equations, find the va (i) (ii) (iii) 	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c. have one root in com c1 alue of $x^3 + y^3 + z^3 - 3xy$	nmon, then find the value of d. 2 z{Here, ω is a cube root of
c. $x^2 - 6x - 7 - e = 0$ If the equations $x^2 + ax$ (a + b). a. 0 Given the following thr unity.} $a\omega^2 + b + c\omega = x$ $a + b\omega + c\omega^2 = y$	+ b = 0 and x ² + bx + a = b. 1 ee equations, find the va (i) (ii)	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c. have one root in com c1 alue of $x^3 + y^3 + z^3 - 3xy^3$	nmon, then find the value of d. 2 z{Here, ω is a cube root of
c. $x^2 - 6x - 7 - e = 0$ If the equations $x^2 + ax$ (a + b). a. 0 Given the following thr unity.} $a\omega^2 + b + c\omega = x$	+ b = 0 and x ² + bx + a = b. 1 ee equations, find the va (i)	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c. have one root in com c1 alue of $x^3 + y^3 + z^3 - 3xy^3$	nmon, then find the value of d. 2 z{Here, ω is a cube root of
c. $x^2 - 6x - 7 - e = 0$ If the equations $x^2 + ax$ (a + b). a. 0 Given the following thr unity.}	$+ b = 0$ and $x^2 + bx + a =$ b. 1 ee equations, find the va	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c1 alue of $x^3 + y^3 + z^3 - 3xy^2$	nmon, then find the value of d. 2 z{Here, ω is a cube root of
c. $x^{2} - 6x - 7 - e = 0$ If the equations $x^{2} + ax$ (a + b). a. 0	$+ b = 0$ and $x^2 + bx + a = b$. 1	b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$ c. -1	nmon, then find the value of d. 2
c. $x^2 - 6x - 7 - e = 0$		b. $x^2 - 7x - 6 + e = 0$ d. $x^2 - 6x - 7 + e = 0$	
If $\log(x - 7) + \log(x + 1)$ a. $x^2 - 7x - 6 - e = 0$) = 1 then which of the f	ollowing is correct?	
a. $-\frac{1}{2} < x < 2$	b. $x < -\frac{1}{2}$	c. x < 2	d. $x < -\frac{1}{2}$ or $x > 2$
If $2 + 3x - 2x^2 < 0$, then	x is given by		
a. 1 – log _e 2	b. 1 + log _e 2	c. log _e 2	d. log ₂ e
The value of $\sum_{n=1}^{\infty} \frac{1}{2n(2n)}$	+1) is		
a. sin x + cos x	b. 1 + log (1 − x)	c. 1 – log (1 + x)	d. None of these
The sum of the infinite	series 1 - x + $\frac{x^2}{2!} - \frac{x^3}{3!} +$	∞ is denoted by	
relation between a, b, a. ab + cd= 0	c & d? b. ab – cd = 0	c. $ac - bd = 0$	d. ac + bd = 0
If the straight lines ax -	- by = k and cx $-$ dy = k,	are perpendicular to e	ach other, then what is the
If the sum of the roots reciprocals, then which a. –1	of the equation x ² + ax of the following is a pos b. 2	+ 1 = 0 is equal to the s sible value of a? c.1	sum of the squares of their d. None of these
Evaluate log ₃ 4×log ₄ 5: a.0	×log ₅ 6×log ₆ 7×log ₇ 8×log b.1	g ₈ 9 c.−1	d. None of these
a.0	b.2	c.128	d. None of these
Find the value of the ex	$\operatorname{vpression}\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1+i\sqrt{3}}{1-i$	$\frac{1-i\sqrt{3}}{1+i\sqrt{3}} \bigg)^{6}$	
	Find the value of the exact a.0 Evaluate $\log_3 4 \times \log_4 5^{22}$ a.0 If the sum of the roots reciprocals, then which a1 If the straight lines ax - relation between a, b, a a. ab + cd= 0 The sum of the infinite a. sin x + cos x The value of $\sum_{n=1}^{\infty} \frac{1}{2n(2n+1)}$ a. 1 - log _e 2 If 2 +3x - 2x ² < 0, then a. $-\frac{1}{2} < x < 2$ If log(x - 7) + log (x + 1)	Find the value of the expression $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)$	Find the value of the expression $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^6 + \left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)^6$ a.0 b.2 c.128 Evaluate $\log_3 4 \times \log_4 5 \times \log_5 6 \times \log_6 7 \times \log_7 8 \times \log_8 9$ a.0 b.1 c1 If the sum of the roots of the equation $x^2 + ax + 1 = 0$ is equal to the sereciprocals, then which of the following is a possible value of a? a1 b. 2 c.1 If the straight lines $ax - by = k$ and $cx - dy = k_1$ are perpendicular to explicitly a series $1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty$ is denoted by a. $\sin x + \cos x$ b. $1 + \log (1 - x)$ c. $1 - \log (1 + x)$ The value of $\sum_{n=1}^{\infty} \frac{1}{2n(2n+1)}$ is a. $1 - \log_e 2$ b. $1 + \log_e 2$ c. $\log_e 2$ If $2 + 3x - 2x^2 < 0$, then x is given by a. $-\frac{1}{2} < x < 2$ b. $x < -\frac{1}{2}$ c. $x < 2$

20.	If $\frac{\log x}{a^2 + b^2 + ab} = \frac{1}{2}$	$\frac{\log y}{p^2 + c^2 + bc} = \frac{\log z}{c^2 + a^2 + ac}$	then, the value of $\mathbf{x}^{(a-b)}$	$y^{(b-c)}.z^{(c-a)}$ is
	a. 0	b. 1	c. abc	d. (xyz) ^{abc}
21.	Solve the equatio	n for x, $2.x^{\frac{1}{3}} + 2.x^{\frac{-1}{3}} = 5.$		
	1	1	1	1
	a. 2, ' 2	b. $4, \frac{1}{4}$	c. 6, i	d. 8, .
22.	$\sqrt[3]{\sqrt{.000064}}$ sime	lifies to		
	a. 0.2	b. 0.02	c. 0.4	d. 0.04
23.	Simplify the expre	ession $(1 + i)^6 + (1 + i)^4$.		
	a4-8i	b. 4 – 8i	c. 8 – 4i	d. 8 + 4i
24.	In a post graduat females. Further, statements are va I. There is 1 marri II. There is 1 marri	e college, 5% of the studen 60% of the students are no lid? ed female student for every 2 ied male student for every 4	ts are married and 25% either married nor fema 28 unmarried female students	of the married students ae les. Which of the following lents.
	a. I	b. II	c. Both I and II	d. None
25.	An amount of Rs? What will be the a	12500 was deposited for a po amount of money, in rupees,	eriod of 3 years at a com at the end of 3 years?	pound interest rate of 20%.
26.	a. 21600 The market price market price of th a. Rs. 12500	b. 22600 of a machine depreciates a e machine is Rs. 8748 then b. Rs. 12000	c. 23600 at an annual compound what was its market pric c. Rs. 20000	d. None of these rate of 10%. If the current e 3 years ago? d.Rs. 20500
27.	A cylinder has a d solids have a heig	iameter of 8cm and a cuboid l ght of 14 cm then what is the	has a square base of side difference in their volum	e length 8cm. If both of these es?
	a.196 cc	D.1960 CC	c.1920 cc	d.195 CC
28.	A metallic cuboid cm, can be drawn	has dimensions of 9cm × 10 from this cuboid?)cm × 11cm. How many s	spherical balls of radius 0.3
	a. 2750	b. 5750	c. 8750	d. 3750
29.	A cylinder of diam is completely sub cylinder?	eter 10 cm and a height of 20 merged inside the cylinder,) cm is filled with water. If what will be the increase	a sphere of diameter 10 cm in the level of water, in the
	a. 3.33 cm	b. 6.67 cm	c. 8.33 cm	d. cannot be determined

FMS / ACTUAL PAPER 2007

- 30.Four brothers and three sisters sit in a single row, facing the photographer's camera. If the three
sisters always sit together, how many different photographs, having all of them, can be eliked?
a.840b.126c.120d.720
- 31. From amongst the available 15 cricket players, of whom 5 are bowlers, a team of 11 is to be selected. What is the probability that the selected team will have at least 3 bowlers?

a.
$$\frac{7}{13}$$
 b. $\frac{5}{13}$ c. $\frac{12}{13}$ d. $\frac{9}{13}$

32. The imaginary part of the complex number $\frac{(a+ib)}{(c-id)}$ is given by

a.
$$\frac{ac+bd}{c^2-d^2}$$
 b. $\frac{ac-bd}{c^2+d^2}$ c. $\frac{ad-bc}{c^2-d^2}$ d. $\frac{ad+bc}{c^2+d^2}$

- 33.The area of a triangle is 21 sq. units. If two of its vertices lie on points (5, 3) and (-4, -3), then find
the locus of the third vertex.a. 2x 3y = 15b. 2x + 3y = 15c. 3x + 2y = 15d. 3x 2y = 15
- 34. The profit by selling an item was 25%. If the item was marked 40% above the selling price then what is the ratio of the marked price to the cost price of the item?

5	. 7	3	. 1
a. <u>-</u>	b. <u>–</u>	c. <u>-</u>	d. <u>–</u>

- 35. The per liter price of vehicular fuel has increased by 25%. If the transportation cost is still the same, then what is the ratio of the reduced fuel consumption to the previous fuel consumption? a. 1:5 b. 1:4 c. 1:3 d. 1:6
- 36. The arithmetic mean of the kth and the lth terms of an A.P. is equal to the arithmetic mean of the mth and the nth terms of the same A.P. Find the value of (m + n). a. l - k b. k - l c. l + k d. None of these
- 37.A very small ball lies at the point (3, 2) in the X Y plane. The ball is now shifted by 5 units towards
the negative Y-axis. If Y-axis were a mirror, then at what point will the image of this ball, lie?
a. (-3, -3)b. (-3, -2)c. (-2, -2)d. (-2, -3)

38.	In the $X - Y$ plane, three lines are concurrent. Their equations are				
	3x + 4y = 6				
	5x + 4y = 4				
	zx + 4y = 5				
	Find the value of the constant z.				
	a. 23	b. 25	c. 27	d. 29	

39. If the following three lines pass through the same point in the X - Y plane, then find the value of (a + b).

$$3x - 2y = 1$$

 $5x + 4y = 9$
 $ax + by = 3$
 $a. 0$ b.1 c.2

40. If ax + by + c = 0 and dx + ey + f = 0 represent the same straight line then which of following is necessarily satisfied?

d.3

a.
$$a = d$$
, $b = e$ and $c = f$
b. $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$
c. $ad + be + cf = 0$
d. None of these

Directions for questions 41 to 45: Answer the questions on the basis of the information given below. The following pie chart gives the percentage wise break up of the cost price of a machine. Study the pie chart and answer the questions that follow.

- 41. If the "Labour Cost" of a single unit of machine is Rs.2500 then what is the per unit "Marketing Cost" of the machine? a. Rs. 1125 b. Rs. 112500 c. Rs. 11250 d. none of these.
- 42. What is the angle subtended by the "Overheads Cost" at the centre of the circle, in the above pie chart? a. 15° b. 75° c. 54° d. 45°

43.How much more is the per unit "Packaging Cost" with respect to the per unit "Marketing Cost"?
a. 94.44%b. 84.44%c. 104.44%d. none of these

44. If the per unit "Packaging Cost" cost of the machine is reduced by 10% then what will be the change in the per unit cost price of the machine? a. -2.5% b. -10% c. -1.5% d. -3.5%

FMS / ACTUAL PAPER 2007

Baasus

- 45. Which of the following is true?
 - a. The sum of per unit "Other Costs" and the "Labour Cost" add up to the per unit "Packaging Cost"
 - b. The sum of per unit "Overhead Cost" and the "Marketing Cost" add up to the per unit "Packaging Cost"
 - c. The sum of per unit "Other Cost" and the "Marketing Cost" add up to the per unit "Packaging Cost"
 - d. none of these.

Directions for questions 46 to 50: Answer the questions on the basis of the information given below. The following bar graph shows the annual comparisons of the "Targeted Production" with the "Actual Production" for a manufacturing plant. Study the bar graph and answer the questions that follow.

46. What is the ratio of the "Targeted Production" to the "Actual Production" in the year 2000 - 2001?

11	17	15	19
a —	h —	c —	— b
¹² 12	²¹ 18	^{3.} 16	20

47. What percent of the "Targeted production" was met by the "Actual Production", in the year 2002 -2003? a. 112.5% b. 12.5% c. 125% d. 120.5%

48. Which of the following two consecutive years have followed the same trend of "Actual Production" with respect to the "Targeted Production"? a. 1999–2000 and 2001–2002 b. 2000-2001 and 2002-2003

c. 2001–2002 and 2000–2001

d. 2002-2003 and 2003-2004

Page 6

FMS / ACTUAL PAPER 2007

- 49. In which of the following years the "Actual Production" surpassed the "Targeted Production" by the maximum percentage? a. 1999-2000 b. 2000-2001 c. 2002-2003 d. 2003-2004
- 50. Which of the following statements is correct about the cumulative production of the plant from the year 1999 to the year 2004?
 - a. The cumulative "Actual Production" has missed the cumulative "Targeted Production" by less than 10%.
 - b. The cumulative "Actual Production" has surpassed the cumulative "Targeted Production" by more than 10%
 - c. The cumulative "Actual Production" has missed the cumulative "Targeted Production" by more than 10%.
 - d. The cumulative "Actual Production" has surpassed the cumulative "Targeted Production" by less than 10 %

Answers and Explanations

1. d Slope of the, line $=\frac{-1}{\frac{-2}{3}}=\frac{3}{2}$

Equation is $\frac{y-1}{x-1} = \frac{3}{2}$ or 3x - 2y = 1Hence (d) is the correct answer.

2. b Slope of the line $=\frac{-1}{(-1)}=1$

equation is
$$\frac{y-2}{x-3} = 1$$

or $x - y = 1$
Hence (b).

3. d

Slopes of lines AB, BC & AC are $\frac{3}{2}, \frac{1}{3}$ and 5. The length of the sides AB, BC and AC are $\sqrt{52}$ units, $\sqrt{10}$ units and $\sqrt{26}$ units. As. AC² + BC² < AB²; It is an obtuse triangle. Hence (d).

4. c

A
A
B
B
C
a =
$$3\sqrt{3}$$
 units
AB² = BD² + AD²
or h = $\sqrt{a^2 - (\frac{a}{2})^2} = \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2} \times (3\sqrt{3})$
or h = 4.5 units. hence (c) is correct.

FMS ACTUAL PAPER 2007

- 5. b $\log_6^7 = \frac{\log 7}{\log 6} = \frac{\log 7}{\log 2 + \log 3} = \frac{c}{a+b}$ Hence, (b) is correct.
- 6. c If x lies between 2 and 3 then it is greater than 2 and less than 3.

$$\Rightarrow$$
 (x - 2) > 0 and (x - 3) < 0

 \Rightarrow (x-2)(x-3)<0 . Hence (b) is always correct. (a) is incorrect and (c) is correct for some values of x, only.

7. a
$$6 + x - x^2 \ge 0$$
$$\Rightarrow x^2 - x - 6 \le 0$$
or $(x+2)(x-3) \le 0$
$$\Rightarrow -2 \le x \le 3$$

Hence (a) is correct.

8. a
$$\frac{1^3 + 2^3 + 3^3 + \dots + 12^3}{1^2 + 2^2 + 3^2 + \dots + 12^2} = \frac{\left\{\frac{12(12+1)}{2}\right\}^2}{\frac{12(12+1)(12\times 2+1)}{6}} = \frac{234}{25}$$

Hence (a) is correct.

9. b
$$\frac{1+i^{\circ}}{1-i^{\circ}} = \frac{(1+i^{\circ})^{2}}{(1)^{2} - (i^{\circ})^{2}} = \frac{1+i^{\circ 2} + 2i^{\circ}}{1+1} = i^{\circ}$$
$$\left(\frac{1+i^{\circ}}{1-i^{\circ}}\right)^{100} = \left(i^{\circ 2}\right)^{50} = 1$$
Hence (b) is correct.

10. b =
$$\left(\frac{-1 + i\sqrt{3}}{2}\right)^6 + \left(\frac{-1 - i\sqrt{3}}{2}\right)^6$$

= $\left(\frac{(1 + i\sqrt{3})^2}{(1)^2 - (i\sqrt{3})^2}\right) + \left(\frac{(1 - i\sqrt{3})}{(1)^2 - (i\sqrt{3})^2}\right)$

Basel

$$= \left(\frac{-1 + i\sqrt{3}}{2}\right)^6 + \left(\frac{-1 - i\sqrt{3}}{2}\right)^6$$
$$= (\omega)^6 + (\omega^2)^6$$
$$\{\omega \text{ is a cube root of unity}\}$$
$$= (\omega^3)^2 + (\omega^3)^4$$
$$= 1 + 1$$
$$= 2.$$

11. $\log_3^4 \times \log_4^5 \times \log_5^6 \times \log_6^7 \times \log_7^8 \times \log_8^9$

 $= \frac{\log 4}{\log 3} \times \frac{\log 5}{\log 4} \times \frac{\log 6}{\log 5} \times \frac{\log 7}{\log 6} \times \frac{\log 8}{\log 7} \times \frac{\log 9}{\log 8}$ $= \frac{\log 9}{\log 3} = \log_3^9 = \log_3^{3^2} = 2$

12. c Let roots are α,β .

$$(\alpha + \beta) = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$
$$\Rightarrow -a = \frac{(-a)^2 - 2 \times (1)}{(1)^2}$$
$$\Rightarrow a^2 + a - 2 = 0$$
$$\Rightarrow a = -2 \text{ or } 1.$$
$$\Rightarrow (c) \text{ is correct.}$$

13. d Slope of line
$$ax - by = k$$
 is $\frac{a}{b}$ and the slop of line $cx - by = k$

 $dy = k^1$ is $\frac{-c}{d}$

as the two lines are perpendicular to each other,

 $\begin{pmatrix} \frac{a}{b} \end{pmatrix} \times \begin{pmatrix} \frac{c}{d} \end{pmatrix} = -1$ $\Rightarrow ac = -bd$ or ac + bd = 0Hence (d) is correct.

14. d The infinite series is denoted by e^{-x}.

15. a
$$\frac{1}{2n(2n+1)} = \left(\frac{1}{2n}\right) - \frac{1}{2n+1}$$
$$\sum_{n=1}^{\infty} \frac{1}{2n(2n+1)} = \left(\frac{1}{2.1} + \frac{1}{2.2} + \frac{1}{2.3} + \dots \right)$$
$$-\left(\frac{1}{2.1+1} + \frac{1}{2.2+1} + \frac{1}{2.3+1} + \dots \right)$$

$$= \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \left(\frac{1}{6} - \frac{1}{7}\right) + \dots \infty$$

$$= -\left[-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots \infty\right]$$

$$= -\left[\log_{e}^{2} - 1\right]$$

$$= -\left[\log_{e}^{2} - 1\right]$$

$$= 1 - \log_{e}^{2}$$

$$= \log_{e}^{\frac{9}{2}} \text{ Hence (a) is the correct answer.}$$
16. d $2 + 3x - 2x^{2} < 0$
 $\Rightarrow (2x + 1)(x - 2) > 0$
 $\Rightarrow x > 2 \text{ or } x < \frac{-1}{2}$
Option (d) is correct.
17. c $\log (x - 7) + \log (x + 1) = 1$
 $\Rightarrow \log[(x - 7)(x + 1)] = 1 = \log_{e} e$
 $\Rightarrow (x - 7)(x + 1) = e$
 $\Rightarrow x^{2} - 6x - 7 - e = 0$
Option (e) is correct.
18. c Let $x^{2} + ax + b = 0$ has roots (α, β)
and $x^{2} + bx + a = 0$ has roots (α, γ)
 α is a root of the equation;
 $(x^{2} + ax + b) - (x^{2} + bx + a) = 0$
or, $(a - b) x = (a - b)$
 $\Rightarrow \alpha = 1$
From the first equation,
 $\alpha + \beta = b \Rightarrow 1 + \beta = -a \& \alpha, \beta = b \Rightarrow 1, \beta = b \Rightarrow \beta = b$
Hence $a + b = -1$.
Option (c) is correct.
19. a $a\omega^{2} + b + c\omega = x$
 $a + b\omega + c\omega^{2} = y$
 $a\omega + b\omega^{2} + c = z$
Adding the three equations,
 $a(1 + \omega + \omega^{2}) + b(1 + \omega + \omega^{2}) + c(1 + \omega + \omega^{2}) = x + y + z$
or $x + y + z = 0$
 $\Rightarrow x^{3} + y^{3} + z^{3} - 3xyz = 0$

Option (a) is correct.

Page 2

FMS ACTUAL PAPER 2007

20. b Let
$$\frac{\log x}{a^2 + b^2 + ab} = \frac{\log y}{b^2 + c^2 + bc} = \frac{\log z}{c^2 + a^2 + ac} = k_1$$

and $x^{(a-b)} \cdot y^{(b-c)} \cdot z^{(c-a)} = k_2$
 $(a-b)\log x + (b-c)\log y + (c-a)\log z = \log k_2$
 $\Rightarrow k_1 \{ (a-b)(a^2 + b^2 + ab) + (b-c)(b^2 + c^2 + bc) \}$
 $= (c-a)(c^2 + a^2 + ac) \} \log K_2$
 $\Rightarrow \log K^2 g = 0$
 $\Rightarrow K_2 = 1$
Hence, (b) is the answer.

21. d $2x^{\frac{1}{3}} + 2x^{\frac{-1}{3}} = 5$ Let $x^{\frac{1}{3}} = t$ $\Rightarrow 2t + \frac{2}{t} = 5 \text{ or } 2t^{2} - 5t + 2 = 0$ $\Rightarrow t = x^{\frac{1}{3}} = 2 \text{ or } \frac{1}{2}$ $\Rightarrow x = 8 \text{ or } \frac{1}{8}$ Hence, (d).

22. a
$$\sqrt{\sqrt{0.000064}} = \left[\left(64 \times 10^{-6} \right)^{\frac{1}{2}} \right] \frac{1}{3}$$

 $= \left[\left[\left(8 \times 10^{-3} \right)^{2} \right]^{\frac{1}{2}} \right]^{\frac{1}{3}}$
 $= \left(8 \times 10^{-3} \right)^{\frac{1}{3}} = \left(2 \times 10^{-1} \right)^{3 \times \frac{1}{3}} = 2 \times 10^{-1}$
 $= 0.2$
Hence (a).
23. a $(1 + i)^{6} + (1 + i)^{4} = (1 + i)^{4} [(1 + i)^{2} + 1]$
 $= (1^{2} + i^{2} + 2i)^{2} [1^{2} + i + 2i + 1]$
 $= [4 (i)^{2}] [1 + 2i]$
 $= (-4 - 8i)$

Number of married students $=\frac{N}{20}$ Number of unmarried students $=\frac{19}{20}N$ Number of married female students $=\frac{N}{80}$ Number of unmaried male students $=\frac{12}{20}N$ Number of unmaried female students $=\frac{7}{20}N$ $\frac{\text{Number of married female student}}{\text{Number of un-married female student}} = \frac{N}{80} \times \frac{20}{7N} = \frac{1}{28}$ \Rightarrow & <u>Number of married male students</u> $=\frac{3N}{80}\times\frac{20}{12N}=\frac{1}{16}$ \Rightarrow Only (I) is valid. \Rightarrow Option (a) is correct 26. b Final price, A = 8748 Rs. Time = n = 3 years depreciation rate = r = -10%Let the price, 3 years ago be, P Then, $A = P\left(1 + \frac{r}{100}\right)^n$ or 8748 = $P\left(1 - \frac{10}{100}\right)^3$ \Rightarrow P = 12,000 Hence (b) is correct. 27. c Volume of cylinder = $\pi \times r^2 h$ $=\frac{22}{7}\times(8)^2\times(14)$ = 2816 cc. Volume of cuboid = $a^2 \times h$ $= (8)^2 \times (14)$ = 896 cc. The difference is 1920 cc. Hence (c) is correct. 28. c Let the number of balls be N, $= \mathsf{N} = \frac{9 \times 10 \times 11}{\frac{4}{3} \times \frac{22}{7} \times \left(\frac{3}{10}\right)^3} = 8750$ Hence (c) is correct.

24. a Let N = total number of students

FMS ACTUAL PAPER 2007

29. b Let the increase in the level of water, inside the cylinder be Δh , then

$$\begin{aligned} \pi \times \left(r_{\text{cylinder}} \right)^2 \times (\Delta h) &= \frac{4}{3} \times \pi \left(r_{\text{sphare}} \right)^3 \\ \Rightarrow \Delta h &= \frac{4}{3} \times (5) = \frac{20}{3} \text{ cm} \quad \text{or} \quad \Delta h = 6.67 \text{ cm} \\ \text{Hence, (b) is correct.} \end{aligned}$$

- 30. d Taking the three sisters as a single entity, we have to arrange 5 entities & then we have to arrange 3 three sisters, internally. Hence, total number of different photographs, that can be taken = (5!) x (3!) = 720. Hence, (d) is correct.
- 31. c P(atleast 3 bowlers)
 - = P(3 bowlers) + P(4 bowlers) + P(5 bowlers)

$$= \frac{{}^{5}C_{3} \times {}^{10}C_{8}}{{}^{15}C_{11}} + \frac{{}^{5}C_{4} \times {}^{10}C_{7}}{{}^{15}C_{11}} + \frac{{}^{5}C_{5} \times {}^{10}C_{6}}{{}^{15}C_{11}}$$
$$= \frac{10 \times 45}{1365} + \frac{5 \times 120}{1365} = \frac{1 \times 210}{1365} = \frac{252}{273} = \frac{12}{13}.$$

 \Rightarrow Option (c) is corrects.

32. d
$$\frac{a+ib}{c-id} = \frac{(a+ib)(c+id)}{(c-id)(c+id)}$$
$$= \frac{ac+iad+ibc+(i)^{2}bd}{c^{2}+d^{2}}$$
$$= \frac{(ac-bd)+i(ad+bc)}{c^{2}+d^{2}}$$
Imaginary part = $\frac{ad+bc}{c^{2}+d^{2}}$
$$\Rightarrow (d) \text{ is the correct answer.}$$
33. a Let the co-ordinates of the third vertex be (h, k). Then,

$$\frac{1}{2} \begin{vmatrix} 5 & 3 & 1 \\ -4 & -3 & 1 \\ h & k & 1 \end{vmatrix} = 21 \Longrightarrow 2h - 3k = 15$$

 \Rightarrow Locus of the third vortex is 2x - 3y = 15. option (a) is correct.

34. b Let the cost price = Rs. 100, then, selling price = Rs. 125 $\Rightarrow \text{Marked price} = 125 \left(1 + \frac{40}{100}\right)$ $\Rightarrow \frac{\text{Marked Price}}{\text{Cost Price}} = \frac{175}{100} = 1.75$ Option (b) is correct.

Page **4**

35. b (Fuel Consumption) × (Fuel Price) = (Transportation Cost) = constant

$$\frac{\text{Current Fuel Consumption}}{\text{Pr evious Fuel Consumption}} = \frac{\text{Pr evious Fuel Price}}{\text{Current Fuel Price}}$$
$$= \frac{100}{125}$$
$$\Rightarrow \frac{\text{reduced Fuel consumption}}{\text{Pr evious Fuel consumption}} = \frac{(125 - 100)}{100}$$
$$= \frac{25}{100} = \frac{1}{4}$$
option (b) is correct.

36. Let the first term and the common difference of the AP are a & d.

$$\frac{\left[a + (k-1)d\right] + \left[a + (l-1)d\right]}{2} = \frac{\left[a + (m-1)d\right] + \left[a + (n-1)d\right]}{2}$$
$$\Rightarrow (k-1) + (l-1) = (m-1) + (n-1)$$
$$\Rightarrow (m+n) = (l+k)$$
option (c) is correct.

37.

Baasus

The ball first lied at point A (3, 2). It was shifted by 5 units to point B (3, -3). Its reflection is at point C (-3, -3). Option (a) is correct.

38. As the three lines are concurrent,

$$\begin{vmatrix} 3 & 4 & -6 \\ 5 & 4 & -4 \\ z & 4 & -5 \end{vmatrix} = 0 \Rightarrow z = 29$$

Hence (d) is correct.

39.
$$\begin{vmatrix} 3 & -2 & -1 \\ 5 & 4 & -9 \\ a & b & -3 \end{vmatrix} = 0$$
$$\Rightarrow 3(-12 + 9b) + 2(-15 + 9a) - 1 (5b - 4a) = 0$$
$$\Rightarrow 22 (a + b) = 66$$
$$\Rightarrow (a + b) = 3$$
$$\Rightarrow Option (d) is correct$$

FMS ACTUAL PAPER 2007

- 40. b For two lines ax + by + c = 0 and dx + ey + f = 0 to be concurrent, the necessary and sufficient conditions is
 - $\frac{a}{d} = \frac{b}{e} = \frac{c}{f}$

option (b) is correct.

41. c Labour cost =
$$\frac{4}{100} \times (\text{Total cost})$$

Marketing Cost = $\frac{18}{100} \times (\text{Total cost})$
 \Rightarrow Marketing Cost = $\frac{18}{100} \times (\text{Total cost})$
 $=$ Rs. 11,250
Option (c) is correct.
42. b Contribution of the Overhead Cost = 15%
 \Rightarrow angle subtended = $\frac{15}{100} \times (360^\circ) = 54^\circ$
 \Rightarrow option (b) is correct.
43. a $\frac{\text{Packaging cost}}{\text{Marketing cost}} = \frac{35}{18} = 1.944$
 \Rightarrow Packaging cost = $\frac{35}{18} = 1.944$
 \Rightarrow Packaging cost = $\frac{35}{100} = 1.058$
44. d Let the total cost of manufacturing one unit = Rs. 100
 \Rightarrow Packaging cost = $35 (1 - \frac{10}{100}) = \text{Rs. 31.50}$
 \Rightarrow new packaging cost = $35 (1 - \frac{10}{100}) = \text{Rs. 31.50}$
 \Rightarrow new total cost = $(100 - (35)) + 31.50$
 $= \text{Rs. 96.5}$
 $\text{change} = \frac{96.5 - 100}{100} = -3.5$
Hence (d) is correct.
50. d Cumulative Targeted Production
 $= (275 + 450 + 350 + 600 + 500) = 2175$ units
Cumulative Actual Production
 $= (275 + 450 + 535) + 235)$ curves.

Other Cost = $\frac{28}{100}$ × (Total cost)

Labour Cost = $\frac{4}{100}$ × (Total cost)

 \Rightarrow (d) option is correct.

