12904

120 MINUTES

1.		s are mixed							
	A) C)	Chlorofluoroc Bromofluoroc			B) D)		ochlorocarbons piodocarbons		
2.		oes not exist.							
	A)	ClF ₃			B)	BrF ₃			
	C)	IF ₃			D)	ICl ₃			
3.	is	used as an ane	sthetic.						
	A)	N_2O			B)	N_2O_3			
	C)	N_2O_4			D)	N_2O_5			
4.	Carbo	rundum is	carbide) <u>.</u>					
	A)	boron			B)	silicon	1		
	C)	calcium			D)	zircon	ium		
5.	is	diamagnetic.							
	A)	O_2	B)	${\rm O_2}^+$		C)	O_2^{++}	D)	O_2
	,		,			,	_	,	_
6.		etinium series is				C ()	(4 2)	D)	(4 : 2)
	A)	4n	B)	(4n+1)		C)	(4n+2)	D)	(4n+3)
7.	How r	nany d electron	is are pi	resent in	Cr of p	otassiu	m dichromate?	,	
	A)	0	B)	5	-	C)	6	D)	7
8.	7r ⁴⁺ aı	nd occur to	ogether	in natur	e				
0.	A)	Ti ⁴⁺	B)	Hf ⁴⁺	C .	C)	Sn^{4+}	D)	Pb^{4+}
	,								
9.		the most stable			e of U.	<i>(</i> 1)		D)	
	A)	+3	B)	+4		C)	+5	D)	+6
10.	C(omplexes are us	sed as N	NMR sh	ift reage	ents.			
	A)	La ³⁺	B)	Gd^{3+}		C)	Lu ³⁺	D)	Ac^{3+}
11.	01	re least prone to	o comnl	av form	ation at	mona th	a following		
11.	A)	Lanthanides	Compi	CX 101111	B)	Actini	_		
	C)	3d transition r	netals		D)		nsition metals		
10	1	.1 .	1	C	, •	4			
12.	ha	as the maximur Eu ³⁺	n value B)	of mag	netic mo	oment a	it room tempera Tb ³⁺	ature. D)	Dy^{3+}
	A)	Lu	D)	Ou		C)	10	D)	Dy
13.	_	is soluble in am	monia	due to t	he form				
	A)	$[Ag(NH_3)_2]^{2+}$			B)	[Ag(N			
	C)	$\left[\mathrm{Ag}(\mathrm{NH_3})_4\right]^{2+}$			D)	[Ag(N	$H_3)_4$		

14.	i	somerism is ex	hibited	by [Co($NH_3)_5N$	$[O_2]^{2+}$.			
	A)	Ionisation			B)	Linka	ge		
	C)	Coordination			D)	Polyn	nerisation		
15.	Cr ₂ Ac	4.2H ₂ O is	magnet	ic at roc	m temp	erature).		
	A)	dia			B)	para			
	C)	ferro			D)	ferri			
16.	is	optically activ	e.						
	A)	Cis [Co(NH ₃)	$_{4}Cl_{2}$		B)	Trans	[Co(NH ₃) ₄ Cl ₂	1+	
	C)	Cis $[Co(en)_2C]$	$[l_2]^+$		D)		$\left[\text{Co(en)}_2\text{Cl}_2\right]^+$	-	
17.	The el	ectronic spectr	um of [Cr(H ₂ O) ₆] ³⁺ sho	ows	absorption p	eaks.	
	A)	1	_		B)	2			
	C)	3			D)	4			
18.	The pa	ale pink colour	of [Mn	(H ₂ O) ₆]	²⁺ is due	e to	- .		
	A) .	spin orbit cou	pling	, , , ,		vibroi	nic coupling		
	C)	CT transition			D)	none	of above		
19.	is	s tetragonal.							
	A)	$[Fe(H_2O)_6]^{2+}$			B)	[Co(F	$I_2O)_6]^{2+}$		
	C)	$\label{eq:constraints} \begin{split} \text{s tetragonal.} \\ \left[\text{Fe}(\text{H}_2\text{O})_6\right]^{2+} \\ \left[\text{Ni}(\text{H}_2\text{O})_6\right]^{2+} \end{split}$			D)	[CuH	$[I_2O)_6]^{2+}$ $[2O)_6]^{2+}$		
20.	d	oes not satisfy	the 18-6	electron	rule.				
		Cr(CO) ₆			B)	Mn(C	O) ₅		
	C)	$Ni(PF_3)_4$			D)	Fe(CC	O) ₄ PPh ₃		
21.	Trans-	-ML ₂ (CO) ₄ [wł	nere L=	$(C_2H_5)_3$	P]shov	vs	CO stretching	IR band	l/s.
	A)	1		2	-	C)		D)	4
22.	The m	umber of unpai	red elec	etrons ni	esent ir	ı Cn ₂ Co) is		
22.		0						D)	3
	ŕ					٠,	_	2)	J
23.		etal present in							
	A)	Fe	B)	Co		C)	Ni	D)	Cu
24.	Ferred	loxins contain -	clu	sters.					
	A)	Fe-N	B)	Fe-O		C)	Fe-S	D)	Fe-Cl
25.	is	the most abun	dant me	etal in th	ne earth	's crust			
	A)	Fe	B)	Ca		C)	Al	D)	Mg
26.	The co	arbon content is	e lowest	in					
20.	A)	Pig iron	, 10 W CS	, 111	B)	Mild	steel		
	C)	Medium steel			D)	Tools			
	*								

27.	The WA)	acker process i Ethylene Acetaldehyde	s used	for the s	ynthesi B) D)	s of Acetor Metha	ne		
28.	Ź	r Natta catalyst Oxo process Polymerization			,	Monsa	to actic acid pr		
29.	Zone r A)	refining is not u Ga	sed for B)	the puri	ification	of C)	 Ge	D)	Sn
30.	Both F A)	renkel and Sch NaCl	ottky d B)	efects an	re found	d in the C)	crystal of AgBr	D)	FeS
31.	How n	nany Cl ⁻ ions su 3	ırround B)	each Cs	s ⁺ ion in	n CsCl l C)	attice?	D)	8
32.	Ti is n A)	ot present in Rutile	B)	Anatas	se	C)	Monazite	D)	Ilmenite
33.	Solids A)	containing F-co	entres a	re Para		C)	Ferro	D)	Ferri
34.	An n-t A)	ype semicondu Ga	ctor is o	obtained In	l by dop	oing Ge C)	with As	D)	Si
35.	is A)	the pyroelectric	c mater B)	rial. FeO		C)	NiO	D)	ZnO
36.	How n	nany significan 2	t figure B)	s are the	ere in th	e numb C)	er 9.50 x 10 ³ .	D)	6
37.	Random A) B) C) D)	error is Always zero Always positiv Always negati Sometimes po	ive	nd some	etimes r	negative	,		
38.	The pl	H at the equival	lence po	oint for	the titra	ation of	a strong acid w	vith a v	weak base
	A) C)	7 <7			B) D)	> 7 None of	of above		
39.	KMnC A) C)	O ₄ serves as its of acidic alkaline	own inc	licator o	of redox B) D)	neutra			

40.	-	orecipitating tion of	_	dimethyl	glyoxim	e is	not	used	for	the	gravimetric
	A)	2 :	B)	Ni^{2+}		C)	Po	l^{2+}		D)	Pt^{2+}
41.	Which A) C)	among the particle Pyrrole Pyrimidine	followin	ig compoi	and is m B) D)	ost are Pyric Thio	line				
42.	The hy A)	ybridization s sp ³	state of B)	the triple sp	bonded	carbo		^ -	ne is	D)	nil
43.	Which A) C)	of the follow Phenyl Ethyl	wing car	rbocations	s is least B) D)	stable Benz Isopi	zyl				
44.	Which A) C)	among the Acetaldehy Formaldehy	de	g will und	dergo Ca B) D)		ylace	eactio etaldel			
45.	Ethyl : A) C)	magnesium t Ethyl alcoh Isopropyl a	ol		nent with B) D)		yl alo	cohol	y hy	droly	rsis gives
46.	The e A)	lectrophile in †CHO :CCl ₂	ivolved	in Rieme	r–Tiema B) D)	nn rea CH ₂ (⁺ CH(O_{+}	n is	·		
47.	In the	following co	mpound	d the abso	lute con	figura	tion	of C ₂ a	and C	C ₃ are	
		1 2HN ² C 1 H ³ C 1									
	A)	2S,3R	B)	2R,3S		C)	25	S,3S		D)	2R,3R
48.	Which A) B) C) D)	Cis-1,3-din Trans-1,3-din Cis-1,4-din Trans-1,4-din	nethylcy limethyl nethylcy	clohexand lcyclohexa clohexand	e ane	inacti	ve?				

49.	What i	s the major pro	duct of	the foll	owing 1	reaction	1?		
		0	N	aBH ₄ _					
		CH_3 - C - CH_2 - C	CH ₃ — CH						
	A)	S-2-Butanol							
	B)	R-2-Butanol							
	C)	Racemic mixtu							
	D)	2-hydroxy-2-n	nethoxy	ybutane					
50.	The ph	notochemical [2	2+2] cy	cloaddi	ition of	a carb	onyl with an	olefin to	give an
	oxetan	e is called	reactio	n.					
	A)	Barton			B)		sh type I		
	C)	Norrish type II	I		D)	Paterr	no-Buchi		
51.	-	otochemical co	nversio	on of 1,4	4-penta	diene to	o vinyl cyclopr	opane is	called
		igement.			D)	Fries			
	A) C)	Di-pi-methane Claisen	;		B) D)		er-Merwein		
	C)	Claisell			D)	vv agii	er-ivier weim		
52.	The Die	els-Alder reacti	on is						
	A)	Stereospecific	_	-					
	B)	Stereoselective							
	C)	Stereospecific							
	D)	Stereospecific	, regios	elective	and en	dosele	etive		
53.	The Co	ope rearrangem	ent is a	n examı	ole of si	igmatro	pic reaction w	ith the o	rder
	A)	(1,3)	B)	(1,5)	-	(C)	(3,3)	D)	(3,5)
E 1	ть	1	1 4		2 1:1		:		
54.		mber of prochi			,3-a1br	omopro C)	•	D)	3
	A)	0	B)	1		C)	2	D)	3
55.	Which	of the followin	ig trans	ition is	most in	tense ir	n carbonyl com	pounds?	•
	A)	$\alpha \to \alpha_*$	B)	$\pi \to \pi^{\dagger}$	*	C)	$n \rightarrow \sigma^*$	D)	$n{\longrightarrow}~\pi^*$
56	Thomas	umbar gianala al	h aawyad	lintha ^l	المرام للأ	D anaat	mum of others of	actoto is	
56.	A)	mber signals of	B)	1 in the 2	H INIVII	C)	rum of etnyf ac	D)	 4
	11)	1	D)	<i>_</i>		C)	3	D)	Т
57.	Cellulo	se is a polymen	r of						
	A)	α-D-glucose			B)	β- D- <u></u>	glucose		
	C)	β- D-galactose	•		D)	β- D-§	gulose		
58.	In DN	A the nucleosid	e unite	are link	ed toge	ther by	bond		
50.	A)	amide	c units	are min	B)	-	hodiester		
	C)	glycosidic			D)	disulf			
	-)	0-7 - 201410			~)		-		

59.

59.	Whic acid?		compounds wi	ll not undergo cleavage with periodic
	A)	Glycerol	B)	Glucose
		Glycolic acid		Glyceraldehyde.
60.	Whic	th among the following	g is a purine base	e?
	A)	Thymine	B)	Cytosine
	C)	Guanine	D)	Uracil
61.		lensation of a diester in as condensation		f a base to give a cyclic β-ketoester is
	A)	Aldol	B)	Perkin
	C)	Claisen	Ď)	Dieckmann
62.	The f	following reaction is ar	example of	-condensation reaction.
	R	N R NH R R Perkin	$R \longrightarrow R$	N
	1	R 2	8 3	
	A)	Perkin	B)	Acyloin
	C)	Benzoin	D)	Thorpe
	- /		,	r
63.	secor		n enolizable	nonenolizable aldehyde, a primary or carbonyl compound to afford β reaction.
		Reformatsky		MPV
		Mannich		Stork enamine
64.		ng the structure elucient is estimated by		oids the number of methoxyl groups
	A)	Kuhn-Roth	B)	Hofmann
	C)	Herzig-Meyer	D)	Zeisel
65.	Quin	ine belongs to clas	ss of alkaloids.	
	A)	pyridine	B)	tropane
	C)	isoquinoline	D)	quinoline
66.	Chole	esterol is a lipid.		
	A)	simple	B)	compound
	C)	derived	D)	glyco
67.	Camp	ohor is obtained from i	soborneol by	 .
	A) 1	Oxidation	B)	Reduction
	C)	Hydrolysis	Ď)	Dehydration

68.	Biotin	is								
	A)	Vitamin A	B)	Vitamin B ₅						
	C)	Vitamin B ₃	D)	Vitamin H						
69.	Edmar	reagent is								
	A)	Phenylisocyanate	B)	Phenylthiocyanate						
	C)	Phenylisothiocyanate	D)	1-fluoro-2,4-dinitrobenzene						
70.	The made of the Hall of the Ha	ost acidic proton in the follow ³ CH ₂ - ² CH ₂ - ¹ CHO	ing con	npound is attached to carbon						
	A)	1	B)	2						
	C)	3	D)	4						
71.	Tropili	ium cation is								
	A)	Antiaromatic	B)	Homoaromatic						
	C)	Heteroaromatic	D)	Nonaromatic						
72.		of the following bond has hig								
	A)	С-Н	B)	C-C						
	C)	C-N	D)	C-O						
73.		orrect order for the basic featur		•						
	A)	Acceleration, deflection, dete								
	B)	Ionisation, acceleration, defle								
	C)	Acceleration, ionisation, defl								
	D)	Acceleration, deflection, ioni	sation,	detection						
74.	Which of the following substrates will have maximum rate for hydrolysis under SN1 reaction conditions?									
	A) B)	Ethyl chloride Chlorobenzene								
	C)	Methyl chloride								
	D)	Benzyl chloride								
75	The ef	fect of chain transfer reagents	is to							
, 0	A)	Increase the average degree of								
	B)	Increase the rate of polymeriz								
	C)	Reduce average degree of po		ation						
	D)	Reduce the rate of polymeris	-							
76.	In ioni	c polymerisation "living polyr	ner" is	formed when						
	A)	Propagation reactions do not	occur							
	B)	Termination reactions do not	occur							
	C)	Initiation reactions occur fast	er than	termination reactions						
	D)	Amino acids are used as mon	omers							

//.	A) B) C) D)	g a step growth Monomer mo Monomer bre Monomer bre Monomer dis	lecules aks dov aks dov	are still wn to fo wn to fo	present rm free rm ions	radicals					
78.	Which A) B) C) D)	R _f value of in Components Stationary and	of the following statements is true for all chromatographic techniques? R _f value of individual components can be calculated Components soluble in water are used. Stationary and mobile phases are used Nonpolar eluents are used								
79.		n of the follow natogram?	ing is t	the mos	t suitab	le gas t	to use as a ca	rrier gas	in a gas		
	A) C)	Methane Helium			B) D)	Carbo Oxyge	n dioxide en				
80.	Gel el	ectrophoresis s	-	s DNA	fragmer	nts base	d on their				
	A)	Molecular siz	ze .		B)	Polari	ty ic charge				
	C)	Solubility			D)	Electi	ic charge				
81.	Accor A) B) C) D)	Directly prop Directly prop Directly prop Directly prop Inversely pro	ortional ortional ortional	l to its n l to its e l to its n	nass nergy nomenti	ım	th of a particle	is			
82.		n among the folcal speeds?	llowing	will hav	ve maxi	mum w	ave character	if they m	nove with		
	A)	Electrons			B)	Protor					
	C)	Neutrons			D)	Aipna	particles				
83.	The end A) C)	nergy of a parti $nh^2/8ma^2$ $n^2h^2/4ma^2$	cle in a	one-din	nension B) D)	al box i n ² h ² /8 nh ² /4r	ma^2	- .			
84.	The n A)	umber of radial 0	nodes B)	for the 3	3s orbita	al of hyd C)	drogen atom 2	is D)	3		
85.	The g A)	round state term	n symbo B)	ol of Ni ³ F ₄	²⁺ is	 C)	$^{3}\mathrm{D}_{2}$	D)	$^{3}\mathrm{D}_{4}$		
86.	What A)	is the bond ord 1.5	er of N B)	O? 2		C)	2.5	D)	3		

87.	The hy	ybridization of sp	carbon B)	atom in sp ²	graphi	te is C)		D)	p^3s
88.	The an A)	ngle between th 60	e three B)	iodine a	atoms o	of I ³⁻ ion C)	is 120	D)	180
89.	BF ₃ bo	elongs to p	ooint gr B)	oup. C _{4v}		C)	$\mathrm{D}_{3\mathrm{h}}$	D)	$\mathrm{D}_{4\mathrm{h}}$
90.	Molec A)	cules possessing	g dipole B)	e momei C _s	nts do n		C_{nv} ing to the point C_{nv}	oint gro D)	up. C _{nh}
91.	Amon A) C)	g X-rays, UV, X-rays UV	IR and	Visible	light, v B) D)	IR	as longest wave e light	elength?)
92.	Which A)	among the fol H ₂ O	_	is a sph C ₆ H ₆	erical to	op mole C)	cule? CH ₄	D)	CH ₃ Cl
93.	The set A) B) C) D)	election rule for It should have It should have It should have It should have	e a pern e a pern e a char	nanent d nanent p nge in di	lipole n oolarisa ipole m	noment bility	that luring irradiatio	on	
94.	The vo	ery intense colo $\sigma \rightarrow \sigma^*$	our of p B)				transition. $n \rightarrow \pi^*$	D)	$\pi{\to}~\pi^*$
95.	The fr A)	ee radicals can IR	be stud B)	lied by - UV	spe	ectrosco _j	py. NMR	D)	ESR
96.	The mA)	nost probable sp $(2RT/M)^{1/2}$ $(4RT/\pi M)^{1/2}$	peed of	a gas m	olecule B) D)	(3RT			
97.	The ra A) B) C) D)	nte of diffusion Directly proportion Inversely proportion Independent of Inversely prop	ortional portional of its m	l to its n al to its nolecula	nolecula molecu r weigh	lar weig t			
98.	Mean A) B) C) D)	free path may be Average distance Average inter Path of minim Path of maxim	nce bet molecu num fre	tween tw lar space e energy	vo succ ee betwe y chang	een mol	ollisions of a n ecules	nolecule	,

99.	Two solutions of identical osmotic pressure are said to be							
	A)	Isonormal	B)	Isobar				
	C)	Isotonic	D)	Equino	ormal			
100.	The te	rm 'mesophase' is associate	ed with	crysta	als.			
	A)	metallic	B)	covale	nt			
	C)	liquid	D)	moleci	ılar			
101.	Sponta A) B) C) D)	Increase of G and decrease Increase of S and decrease Increases of both G and S Decreases of both G and S	e of S e of G	y				
102.	The di	fferential of is inexact						
	A)	G	B)	U				
	C)	W	Ď)	S				
103.		the entropy of CO is						
	A)	zero	B)	> zero				
	C)	< zero	D)	None of	of above			
104.	reaction A) B)	is the influence of temper on? K increases with T K decreases when T is rais K is independent of T K increases with T only if	sed		•	constant	(K) of a	
105.		anonical ensemble partition molecule partition function				s is relat	ted to the	
	A)	$Q = q^N / N$	B)	O = N				
		$Q = q^N / N!$		Q = N				
106.	is A)	not a fermion. Electron B) Pro	ton	C)	Neutron	D)	⁴ He	
107.		zero order reaction, the inintration is changed to 1.0 M 0.034 MS ⁻¹ 0.017 MS ⁻¹			nt for the reach M ⁻¹ S		minute the	
108.	is	not a kinetic parameter.						
	A)	Zero point energy	B)	Activa	tion energy			
	C)	Entropy of activation	D)		ponential fac	tor		
		* *			-			

109.	The L	indemann-Hinshelwood mech	anism i	s used t	o explain 1	reaction	
	A)	unimolecular	B)	bimol	ecular		
	C)	trimolecular	D)	tetran	olecular		
110.	The te	emperature dependence of reac	tion rat	es is re	oresented in the	e ec	uation.
	A)	Arrhenius	B)	Clape			-
	C)	Eyring	Ď)	Debye	•		
111.	RET e	equation represents adsor	ntion				
111.	A)	monolayer	B)	double	e layer		
	C)	triple layer	D)	multil	•		
	,		,		,		
112.		e aqueous solution-air interfac		-	-	olute.	
	A)	acetone	B)	-	l ether		
	C)	ethyl acetate	D)	glycei	rine		
113.	The so	eattering of light by colloidal p	articles	is knov	wn as effec	et	
	A)	Cotton	B)	Tynda			
	C)	Raman	D)	Rayle	igh		
114.	is	used to study the structure of	surface	S.			
	A)	_			ing Tunneling	Microsc	ору
	C)	Mossbauer Spectroscopy	D)	Rama	n Spectroscopy	7	
115.	A cata	alyst speeds up a reaction by					
110.	A)	Increasing the equilibrium co					
	B)	Decreasing the equilibrium of					
	C)	Increasing the free energy of					
	D)	Decreasing the free energy of					
116.	The m	olar conductance of an electro	olyte is -				
110.	A)	Maximum at infinite dilution	•		num at infinite	dilution	
		Independent of dilution					
117	Therin	nio atnomath of ano malal calv	tion of	E ₂ CO :	:_		
117.		onic strength of one molal solu	tion of			D)	0
	A)	1 B) 2		C)	4	D)	8
118.	is	used for making salt bridge.					
	A)	NaCl B) KCl		C)	NaBr	D)	KBr
119.	When	a dilute solution of H ₂ SO ₄ is	s electro	olvzed i	ısing Pt electro	odes the	e product
11).		anode is gas.	010001	31,20 a .	asing it electro	, 405, 111	product
	A)	H_2 B) O_2		C)	SO_2	D)	SO_3
120.	In elec	ctrogravimetric analysis the a	nalvte i	s quant	itatively denosi	ted as a	solid on
120.	the		iiaijio ii	- quant	deposi	.coa as a	Jona on
	A)	Cathode	B)	Anode			
	C)	Cathode or anode	D)	Catho	de and anode		