- A particle is projected with velocity 2√gh, such that it just crosses two walls of height h. Find the angle of projection.
 (a) 15°
 (b) 75°
 - (a) 15° (b) 75° (c) 60° (d) 30°
- 2. For a projectile, (range)² is 48 times of (maximum height)² obtained. Find angle of
- (maximum height)⁴ obtained. Find angle of projection.

 (a) 60°

 (b) 30°
- (c) 45°
 (d) 75°
 3. Which of the following cannot be explained on the basis of wave nature of light?
 - the basis of wave nature of light?

 (i) Polarization

 (ii) Optical activity
- (iii) Photoelectric effect(iv) Compton effect(a) (iii) and (iv)
 - (b) (ii) and (iii) (c) (i) and (iii)
- (d) (ii) and (iv)4. An ice cube is sliding down on an inclined plane of angle 30°. Coefficient of kinetic
 - friction between block and inclined plane is $\frac{1}{\sqrt{3}}$. What is acceleration of block?
 - (a) Zero (b) 2 m/s^2 (c) 1.5 m/s^2 (d) 5 m/s^2
- (c) 1.5 m/s²
 (d) 5 m/s²
 A round disc of moment of inertia I₂ about its axis perpendicular to its plane and passing
- through its centre is placed over another disc of moment of inertia I_1 rotating with an angular velocity ω about the same axis. The final angular velocity of the combination of discs is

 (a) $\frac{I_2\omega}{I_1+I_2}$ (b) ω
 - (c) $\frac{I_1 \omega}{I_1 + I_2}$ (d) $\frac{(I_1 + I_2) \omega}{I_1}$

- 6. A particle is executing SHM at mid-point of mean position and extremity. What is the potential energy in terms of total energy (E)?
 (a) E/A
 (b) E/A
 - (a) $\frac{E}{4}$ (b) $\frac{E}{16}$ (c) $\frac{E}{2}$ (d) $\frac{E}{8}$
- A train is approaching with velocity 25 m/s towards a pedestrian standing on track, frequency of horn of train is 1 kHz. Frequency
 - heard by the pedestrian is (v = 350 m/s)(a) 1077 Hz (b) 1167 Hz (c) 985 Hz (d) 945 Hz
- A force of 200 N acts tangentially on the rim of a wheel 25 cm in radius. Find the torque.
- (a) 50 N-m (b) 150 N-m (c) 75 N-m (d) 30 N-m

 9. Focal length of objective and eyepiece of

(d) 225 cm

- telescope are 200 cm and 4 cm respectively.
 What is length of telescope for normal adjustment?

 (a) 196 cm

 (b) 204 cm
- 10. Two lenses of power 3D and 1D are kept in contact. What is focal length and nature of combined lens?
 - (a) 50 cm, convex (b) 200 cm, convex (c) 50 cm, concave

(c) 250 cm

YDSE?

- (d) 200 cm, concave11. Intensity of wave A is 9I, while that of wave B is I. What is maximum and minimum intensity in
 - (a) 82*I*, 80*I* (b) 8*I*, 10*I* (c) 16*I*, 4*I* (d) 4*I*, *I*
- 12. A liquid X of density 3.36 g/cm³ is poured in a U-tube, which contains Hg. Another liquid Y is poured in left arm with height 8 cm, upper levels of X and Y are same. What is density of Y?

- (a) 0.8 g/cc
- (b) 1.2 g/cc
- (c) 1.4 g/cc
- (d) 1.6 g/cc
- Two charges q₁ and q₂ are placed 30 cm apart, as shown in the figure. A third charge q_3 is moved along the arc of a circle of radius 40 cm from C to D. The change in the potential energy of the system is $\frac{q_3}{4\pi\epsilon_0}$ k, where k is

- (a) 8q2
- (b) 8q
- (c) 6q2
- (d) 6q
- 14. What is order of energy of X-rays (E_X) , radio waves (E_R) and microwaves (E_M) ?
 - (a) $E_X < E_R < E_M$ (b) $E_X > E_M > E_R$
 - (c) $E_M > E_X > E_R$ (d) $E_M < E_R < E_X$
- 15. A ray of light is incident on a plane mirror, along the direction given by vector $A = 2\hat{i} - 3\hat{j} + 4\hat{k}$. Find the unit vector along reflected ray. Take normal to mirror along the direction of vector $\mathbf{B} = 3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$.

(a)
$$\frac{-94\hat{\mathbf{i}} + 237\hat{\mathbf{j}} + 68\hat{\mathbf{k}}}{49\sqrt{29}}$$

- (b) $\frac{-94\hat{\mathbf{i}} + 68\hat{\mathbf{j}} 237\hat{\mathbf{k}}}{49\sqrt{29}}$
- (c) $\frac{3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} 2\hat{\mathbf{k}}}{7}$
- (d) None of the above
- 16. Motion of two particles is given by

$$y_1 = 0.25 \sin(310 t)$$

$$y_2 = 0.25 \sin (316 t)$$
.

Find beat frequency.

- (a) 3

- 17. A coin is of mass 4.8 kg and radius 1 m rolling on a horizontal surface without sliding with angular velocity 600 rotation/min. What is total kinetic energy of the coin?
 - (a) 360 J
- (b) $1440 \pi^2 J$
- (c) $4000 \pi^2 J$
- (d) $600 \pi^2 J$
- 18. In BJT, maximum current flows in which of the following?
 - (a) Emitter region
 - (b) Base region
 - (c) Collector region
 - (d) Equal in all the regions
- 19. In semiconductors at a room temperature
 - (a) the valence band is partially empty and the conduction band is partially filled
 - (b) the valence band is completely filled and the conduction band is partially filled
 - (c) the valence band is completely filled
 - (d) the conduction band is completely empty
- 20. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current leads the voltage by 45°. The value of C is

(a)
$$\frac{1}{2\pi f (2\pi f L + R)}$$
 (b) $\frac{1}{\pi f (2\pi f L + R)}$

(c)
$$\frac{1}{2\pi f(2\pi fL - R)}$$
 (d) $\frac{1}{\pi f(2\pi fL - R)}$

- 21. What is the angle between electric field and equipotential surface?
 - (a) 90° always
- (b) 0° always
- (c) 0° to 90°
- (d) 0° to 180°
- 22. A satellite moves in elliptical orbit about a planet. The maximum and minimum velocities of satellites are 3×10^4 m/s and 1×10^3 m/s respectively. What is the minimum distance of satellite from planet, if maximum distance is $4 \times 10^4 \text{ km}$?
 - (a) 4×10^3 km (b) 3×10^3 km
 - (c) $4/3 \times 10^3$ km (d) 1×10^3 km
- 23. Four balls each of radius 10 cm and mass 1 kg. 2 kg, 3 kg and 4 kg are attached to the periphery of massless plate of radius 1 m. What is moment of inertia of the system about the centre of plate?

- (a) 12.04 kg-m²
- (b) 10.04 kg·m²
- (c) 11.50 kg-m²
- (d) 5.04 kg-m²
- 24. A Carnot engine has efficiency 1/5. Efficiency becomes 1/3 when temperature of sink is decreased by 50 K. What is the temperature of sink?
 - (a) 325 K
- (b) 375 K
- (c) 300 K
- (d) 350 K
- A cyclist moves in such a way that he takes 60° turn after 100 m. What is the displacement when he takes 7th turn?
 - (a) 100 m
- (b) 200 m
- (c) 100√3 m
- (d) $100/\sqrt{3}$ m
- 26. A spring of spring constant k is cut into two equal parts. A block of mass m is attached with one part of spring. What is the frequency of the system if v is frequency of block with original spring?
 - (a) $\sqrt{2}v$
- (b) v/2
- (c) 2v
- (d) v
- 27. Why is there sudden increase in current in zener diode?
 - (a) Due to rupture of bonds
 - (b) Resistance of depletion layer becomes less
 - (c) Due to high doping
 - (d) None of the above
- 28. Coefficient of coupling between two coils of self-inductances L_1 and L_2 is unity. It means
 - (a) 50% flux of L_1 is linked with L_2
 - (b) 100% flux of L₁ is linked with L₂
 - (c) $\sqrt{L_1}$ time of flux of L_1 is linked with L_2
 - (d) None of the above
- 29. One mole of an ideal gas at an initial temperature of T kelvin does 6 R joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is 5/3, the final temperature of gas will be
 - (a) (T + 2.4) K
- (b) (T-2.4) K
- (c) (T + 4) K
- (d) (T-4)K

- 30. A drum of radius R and mass M, rolls down without slipping along an inclined plane of angle 0. The frictional force
 - (a) converts translational energy to rotational
 - (b) dissipates energy as heat
 - (c) decreases the rotational motion
 - (d) decreases the rotational and translational motion
- 31. If in a nuclear fusion process, the masses of the fusing nuclei be m_1 and m_2 and the mass of the resultant nucleus be m3, then

 - (a) $m_3 = m_1 + m_2$ (b) $m_3 = |m_1 m_2|$ (c) $m_3 < (m_1 + m_2)$ (d) $m_3 > (m_1 + m_2)$
- 32. If the angle between the vectors \vec{A} and \vec{B} is θ , the value of the product $(\vec{B} \times \vec{A}) \cdot \vec{A}$ is equal to

 - (a) $BA^2 \cos \theta$ (b) $BA^2 \sin \theta$

 - (c) $BA^2 \sin \theta \cos \theta$ (d) zero
- 33. A beam of light composed of red and green rays is incident obliquely at a point on the face of a rectangular glass slab. When coming out on the opposite parallel face, the red and green rays emerge from
 - (a) two points propagating in two different non-parallel directions
 - (b) two points propagating in two different parallel directions
 - (c) one point propagating in two different directions
 - (d) one point propagating in the same direction
- 34. A car runs at a constant speed on a circular track of radius 100 m, taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap respectively is
 - (a) 0,0
- (b) $0.10 \, \text{m/s}$
- (c) 10 m/s, 10 m/s (d) 10 m/s, 0
- 35. If a bar magnet of length l and cross-sectional area A is cut into two equal parts as shown in figure, then the pole strength of each pole becomes

- (a) half
- (b) double
- (c) one-fourth
- (d) four times

36. Three photons coming from excited atomic hydrogen sample are observed, their energies are 12.1 eV, 10.2 eV and 1.9 eV. These photons must come from

- (a) single atom
- (b) two atoms
- (c) three atoms
- (d) either two or three atoms
- 37. A police car is travelling in a straight line with a constant speed ν . A truck travelling in the same direction with constant velocity $3\nu/2$ passes, the police car at t=0. The police car starts accelerating 10 s after passing the truck, at a constant rate of $3 \, \text{m/s}^2$, while truck continues to move at constant speed. If the police car takes 10 s further to catch the truck, find the value of ν .
 - (a) 10 m/s (c) 20 m/s
- (b) 15 m/s (d) 30 m/s
- 38. Consider the statements.
 - (I) If magnetic field, $\vec{B} = 0$, then magnetic flux is also zero.
 - (II) If magnetic flux, $\phi = 0$, then magnetic field is also zero.
 - (a) (I) is true, (II) may be true

- (b) Both (I) and (II) are true
- (c) (I) may be true, (II) is true
- (d) (I) and (II) both are false
- 39. Which of the following configurations of electric lines of force is not possible?

- 40. Three guns are aimed at the centre of a circle. They are mounted on the circle, 120° apart. They fire in a timed sequence, such that the three bullets collide at the centre and mash into a stationary lump. Two of the bullets have identical masses of 4.5 g each and speeds of v₁ and v₂. The third bullet has a mass of 2.50 g and a speed of 575 m/s. Find the unknown speeds.
 - (a) 200 m/s each
 - (b) 145 m/s and 256 m/s
 - (c) 536 m/s and 320 m/s
 - (d) None of the above

Answer – Key

1.	d	2.	b	3.	a	4.	a	5.	С	6.	a	7.	a	8.	a	9.	b	10.	a
11.	С	12.	a	13.	a	14.	b	15.	a	16.	b	17.	b	18.	а	19.	а	20.	С
21.	a	22.	С	23.	b	24.	С	25.	a	26.	a	27.	a	28.	b	29.	d	30.	a
31.	С	32.	d	33.	b	34.	b	35.	a	36.	С	37.	b	38.	a	39.	d	40.	d