First Semester M. A./M. Sc. I Examination

MATHEMATICS

Paper - IV

(Topology - I 104)

Time: Three Hours] [Max. Marks: 60

N. B. : All questions are compulsory.

UNITI

 (a) Show that the set of all real numbers is uncountable.

OR

- (b) If X is a well ordered set, and E is a subset of X with the property that $X_x \subseteq E$ implies that $x \in E$, then show that E = X.
- (c) Show that $C = 2^{\alpha}$, where C = Cardinal number of set of all real nos. and C = Cardinal number of the set of rational nos.

OR

(d) Show that multiplication of order types is not commutative.

AE-778

Contd.

2. (a) Show that c (E) = E U d (E), for any set E in a topological space [x,].

OR

- (b) Show that a family 33 of sets is a base for a topology for the set X = U {α B / B ∈ } if and only if for every B₁, B₂ ∈ and every x ∈ B₁ ∩ B₂, there exists a B ∈ such that x ∈ B ⊆ ∩ B₁ ∩ B₂.
- (c) Show that a subset of a topological space is closed if and only if it contains all its limit points.

OR

- (d) Show that :-
 - (i) The intersection of any number of members of His a member of H. 6
 - (ii) The union of any finite number of members of \mathcal{F}_{S} is a member of \mathcal{F}_{S} , where \mathcal{F}_{S} is the family of all closed subsets of \mathcal{F}_{S} topological space (X, \mathcal{I}) .

UNIT III

3. (a) Show that the components of a topological space (X, Y) are closed subsets of X. 6

OR

- (b) Show that a topological space (x.J) is compact if and only if any family of closed sets having the finite intersection property has a non empty intersection.
- (c) If f is a continuous mapping of X into X* then show that f maps every qrc wise connected subset of X onto an qrc wise connected subset of X*.

OR

(d) Show that a mapping f of X into X* is open if and only if
f (i (E)) i* (f⊆(E) for every E⊆ X.

UNIT IV

 (a) Show that every T₁ - space is a T₀ - space but a T₀ - space need not be a T₁ - space.

OR

- (b) Show that a T₁-space X is countably compact if and only if every countable open covering of X is reducible to a finite subcover. 6
- (c) If (x_n) is a sequence of distinct points of a subset E of a topological space X which

	converges to a point x ∈ X then show that
	x is a limit point of the set E. 6
	or top self-bloggiffer OR or he with discrete
(d)	Show that every compact subset E of a
	UNIT V. balannes
5. (a)	Show that every compact Hausdorff space is
	normal.
	OR see of the world
(p)	State and prove Urysohn's lemma.
(c)	Show that every locally compact Hausdorff space is a Tichonov space.
	OR
(d)	Show that every regular T ₀ - space is a
	T ₈ space.
	source along to of single-field as 2
	recognition which was considered in the first (400). The discussion
	Assessed designing or a sold of absolute.
AE-778	4 2 330