M. A. / M. Sc. - I : First Semester - Mathematics - 104
Paper - IV

Topology - I

P. Pages: 4

Time: Three Hours

Max. Marks: 60

Note: 1. Solve all questions.

UNIT-I

1. a) Show that $N_0 N_0 = N_0 N_0 c = c$ and cc = c. 6

OR

b) If α , β are ordinal numbers, then show that either $\alpha \leq \beta$ or $\beta \leq \alpha$.

6

OR

c) Show that $2^{N_0} = c$.

6

OR

 d) Show that union of a denumerable number of denumerable sets is a denumerable set.

6

UNIT - II

a) Let X = {a, b, c} and Let J = {φ, {a}, {b}, {a, b}, X} show that d({a}) = {c}, d({c}) = φ.
 Find d({b}), d({a, b}).

OR

- State Kuratowski closure axioms and prove that in a topological space closure satisfies Kuratowski closure axioms.
- For any set E in a topological space, show that i(E) = Cc(CE) where C denotes complementations, c denotes closure and i denotes interior.

OR

d) Suppose (X, J) in a topological space and X^v ⊂ X. Define relative topology for X^v and show that it is topology on X^v.

UNIT-III

3. a) If a connected set c has a non empty intersection with both a set E and the complement of E in a topological space, then show that c has non - empty intersection with the boundary of E.

OR

- Prove that a compact subset of a topological space is countably compact.
- c) Show that a topological space X is compact if and only if any family of closed sets having finite intersection property has a non empty intersection.

OR

d) Show that a mapping f of X into X^{v} is open if and only if $f(i(E)) \subset i^{v}(f(E))$ for every $E \subset X$.

UNIT-IV

4. a) Show that in a T₁-space X, a point x is a limit point of a set E if and only if every open set containing x contains an infinite number of distinct points of E.

OR

 Show that every compact subset of Hausdorff space is closed.

6

6

6

6

	c)	contains an infinite Hausdorff space X contains an infinite sequence of disjoint open sets.	6
		OR	
	d)	Show that in a second axiom space, every open covering of a subset is reducible to countable subcovering.	6
		UNIT - V	
5.	a)	Show that every regular Lindelof space is normal.	6
		OR	
	b)•	Show that if every subspace of a topological space X is normal then X is completely normal.	6
	c)	Show that every compact Hausdorff space is normal.	6
		OR OR	
	d)	 Show that: i) Every regular T₀ space is T₃. ii) Regularity is Hereditary and topological property. 	6

AD - 1009		9° 4 209/4	25