First Semester M. A./M. Sc. Part - I (CBCS) Examination

MATHEMATICS

Topology - I

1 MTH 4

Time: Three Hours] [Max. Marks: 80

N. B. : Solve any one question from each Unit.

UNIT I

- 1. (a) Prove that if $A \leq B$ and $B \leq A$ then $A \sim B$.
 - (b) Define denumerable set and show that the set of all real numbers is uncountable. 8
- 2. (c) If f is a similarity mapping of the wellordered set X onto the subset $Y \subseteq X$ then prove that $x \le f(x)$ for all $x \in X$.
 - (d) Prove that every set of ordinal numbers is a well-ordered set.

UNIT II

- 3. (a) Define :-
 - (i) Topological Space
 - (ii) Discrete Space

- (iii) Indiscrete Space
- (iv) Limit Point

with examples.

8

- (b) Define base with example and show that not every family of subsets of x is a base for a topology for x.
 8
- (c) If A, B and E are subsets of the topological space (X, J) then the derived set has the following properties.
 - (D_1) d $(\phi) = \phi$
 - (D_2) If $A \subseteq B$ then $d(A) \subseteq d(B)$.
 - \bigcirc If $x \in d(F)$ then $x \in d(E)\{x\}$
 - (D_4) d(A U B) = d(A) U d(B).
 - (d) Define closed set and closure and prove that the family of all closed subsets in a topological space has the following properties.
 - (1) The intersection of any number of members of ff is a member of ff.
 - (2) The union on any finite number of members of ff is a member of ff. 8

UNIT III

- 5. (a) Define boundary point of a set. Prove that if a connected set C has a non-empty intersection with both a set E and the complement of E in a topological space (x, y) then C has a non-empty intersection with boundary of E.
 - (b) Define component of a set and Locally connected space. Prove that the components of a topological space (x, y) are closed subsets of X.
- (c) Define a connected set and prove that the union E of any family {C_λ} of connected sets having a non-empty intersection is a connected set.
 - (d) Define finite intersection property and prove that a topological space (x, y) is compact iff any family of closed sets having the finite intersection property has a non-empty intersection.

UNIT IV

7. (a) Define To-space and prove that a topological space X is a To-space iff the closures of distinct points are distinct.

AF - 602

- (b) A T₁ space X is countably compact iff every countable open covering of X is reducible to a finite subcover. Prove this.
- 8. (c) Prove that a topological space X satisfying the first axiom of countability is a Housdorff space iff every convergent sequence has a unique limit.
 - (d) Every second axiom space is hereditary separable.

UNIT V

- 9. (a) Prove that a topological space X is completely normal iff every subspace of X is normal after defining completely normal space. 8
 - (b) Prove that a normal space is completely regular if and only if it is regular. 8
- 10. (c) Define completely regular space and prove that every completely regular space is regular and hence every Tichonov space is T₃-space and every T₄-space is Tichonov space. 8
- (d) Define T₄-space and T₅-space and prove that every completely normal space is normal and hence every T₅-space is a T₄-space.