upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

R 321

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2005.

Fourth Semester

Electronics and Communication Engineering

EC 242 — DIGITAL ELECTRONICS

Time: Three hours

Maximum: 100 marks

(8)

Answer ALL the questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State Demorgan's laws.
- 2. Simplify $A + AB + \overline{A} + B$.
- 3. Define noise margin.
- 4. What are tri-state gates?
- 5. What is a combinational circuit? Give an example.
- 6. What is a sequential circuit? Give an example.
- 7. What is PLA?
- 8. Draw the logic diagram of SR flip flop.
- 9. Define cycles.
- 10. Define a stable state.

PART B \rightarrow (5 × 16 = 80 marks)

- 11. (i) Explain races and hazards with suitable examples.
 - (ii) Discuss methods of designing race free and hazard free circuits with examples. (8)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com

12.	(a)	(i)	Minimise the following using Karnaugh map. Implement resultant function using NOR gates only.	the
			$f(A, B, C, D, E) = \pi M(2, 4, 7, 9, 26, 28, 29, 31).$	(12)
		(ii)	Write notes on computer aided minimisation procedures.	(4)
			Or	
	(b)	(i)	Simplify the following function using tabulation proced Implement the reduced function using NAND gates only.	ure.
		f	$= \sum m(0,1,3,5,6,9,11,14,21,23,24,31) + \sum d'(25,30).$	(12)
		(ii)	Define maxterms and minterms. Give examples.	(4)
13.	(a)	(i)	Explain the working of a TTL NAND gate.	(12)
(4)		(ii)	Write notes on HTL gate.	(4)
\mathbf{Or}				
	(b)	(i)	Explain the working of a CMOS logic gate.	(12)
		(ii)	Write notes on ECL gate.	(4)
14.	(a)	(i)	Design and explain the working of full adder and a decoder.	(12)
		(ii)	Write notes on EPROM.	(4)
\mathbf{Or}				
	(b) Design and explain the working of a Gray to BCD converter.			
15.	(a)	(i)	Explain the working of a master-slave JK flip flop.	(8)
		(ii)	Write notes on memory decoding.	(8)
\mathbf{Or}				
	(b)	(i)	Design and explain the working of a mod-11 counter.	(8)
		(ii)	Explain the techniques of state minimisation using an example.	(8)

upload your college symposium/conference details,function photos,videos in www.technicalsymposium.com