1 11 11 11 11 11 11 11 11 11 11 11 11 1	(Pages : 2)	1889
Reg. No.:		
Name :		

III Semester M.C.A. Degree Examination, May 2009 ALGORITHM ANALYSIS AND DESIGN

Time: 3 Hours Max. Marks: 100

PART - A

Answer all questions. All questions carry equal marks.

- 1. List the advantageous of complexity analysis in algorithms.
- 2. What are priority queues? List the application of priority queues.
- 3. List the advantageous and disadvantageous (if any) of heap sort over any two well known sorting methods.
- 4. Write an algorithm for right rotation of a binary tree. Explain your algorithm with an example.
- 5. Write a short note on B trees.
- 6. Write a short note on NP problems.
- 7. What do you mean by branch and bound method of problem solving?
- 8. What do you mean by knapsack problem and how it can be solved?
- 9. Write a short note on Strassen's algorithm.
- 10. What do you mean by topological sorting? Explain with example. ($10\times4=40$ Marks)

PART - B

Answer any two questions from each Module.

Module - I

- 11. Do you think that both time space complexity analyses are required for all types of problems? Discuss with examples.
- 12. Write an algorithm to find the second largest element in a set of 'n' numbers. How many comparisons dos your algorithm required in the worst case?
- 13. What do you mean by recurrence equations and where it is used? Explain with an example.

Module - II

- 14. Write an algorithm to find the minimum cost spanning tree. Explain the algorithm with an example.
- 15. What are AVL trees? Explain the importance of AVL tree with examples.
- 16. Write a simple algorithms for DFS and BFS traversals in a graph and list the data structures used in those algorithms.

Module - III

- 17. What is eight-queen problem? Write and explain an algorithm for solving this problem.
- 18. How the divide and conquer algorithm is differ from greedy algorithms? Explain with a simple example.
- 19. What is the working principle of dynamic programming? Explain with an example. $(6 \times 10 = 60 \text{ Marks})$
