7018

Your Roll No

M Tech / II Sem.

NUCLEAR SCIENCE & TECHNOLOGY Paper :NST - 609 : Nuclear & Computational Science

4 j

Time 3 hours

Maximum Marks 70

(Write your Roll No on the top immediately on receipt of this question paper)

Question No 1 is compulsory. Answer any four questions out of the rest

		Answer any four questions out of the	rest
1)			
	a)	· b · · · · · · · · · · · · · · · · · ·	2
		# include < iostream >	
		int main () std cout <<"Hello, world!" << std endl,	
	b)	Will this programe compile successfully? Why or why not?	2
		# include < iostream >	
		int main ()	
		{	
		/* this is a comment that extends over sevseral lines	
		becuase it uses */ and */ as its starting and ending delimeters */	
		std cout<<"Does this compile?" < <std endl,<="" td=""><td></td></std>	
		return 0	
		}	
	c)	The average binding energy per nucleon of the nuclei is about 8 MeV. Deuteron	2
		binding energy is only about 2 224 MeV but it is still stable. Give reason for the	
		stability of the deuteron	
	d)	Using neutron (n) and proton (p) combination, three bound states nn, np & pp can be	2
		formed Out of these only np bound state is stable and exists. Why not the other two	
		bound states are stable	
	e)	Arrange the following operators by precedence from highest to lowest	3
		x < y, $x = y$, $x - y$, $x + y$, $x = -y$	
	f)	Determine if actinium - 225 can decay through α as well as β decay or not?	3
	g)	Write a C++ program to test whether a given number is prime or not	4
	h)	The ground state of 137 56 Ba has spin-parity of 3/2. The first two excited states	4
		have spin parity 1/2+ & 11/2- According to the shell model, what assignments	
		would be expected for these excited states	
2)			
	a)	Write a C++ program that asks the users to enter two numbers and tells the user	3
		which number is larger than the other	_,
	b)	Is the following program valid? If so, what does it do?	1.1
			ì

```
If not, say why not, and rewrite it to be valid
         #include <iostream>
         # include <string>
         int main()
         std string s= "a string",
         std string x = s+", really",
         std cout <<s< std endl.
         std . cout << x << std endl,
         return 0,
     c) Write a C++ program to find the real root of (x+1)^5 using Secant method
                                                                                                        5
3)
    a) Write a C++ program to generate the product of the number in the range [1,10)
                                                                                                       4
    b) Write a C++ program to calculate the relativistic mass and speed of an electron
                                                                                                       8
         accelerated in an electron gun
4)
    a) if deutron had excited states, then what would be the minimum potential for the first
                                                                                                       3
         excited state (l = 1)
    b) What is the significance of scattering length? What information sign of the scattering
                                                                                                       3
         length provides about the system
    c) Predict the ground state spins, parties and magnetic moments of the following nuclie
                                                                                                       6
        using the shell model
         He. 23 Na GCI, GCa
5)
    a) Ground state of deutron is a mixture of S & D state but not a mixture of S & P or F
                                                                                                       3
        state Why?
    b) Consider the reaction
                                                                                                       4
        n^{+235}_{92}U \rightarrow {}^{141}_{66}Ba + {}^{92}_{36}Kr + 3n
        calculate the energy released in mev in the reaction
       [Atomic masses {}^{2.5}_{52}U = 235.04391u, {}^{141}_{56}Ba = 140.9139u {}^{92}_{36}Kr = 91.8973u]
   c) We know that deutron system is an admixture of {}^3S_1 \& {}^3D_1 states. Calculate the
                                                                                                      5
       countribuition of <sup>3</sup>D<sub>1</sub> state to the deuteron ground state on the basis of magnetic dipole
```

moment discupancy between the therotical and experimental values

Given
$$\mu_0 = -1.913 \mu n \ \mu_p = 2.793 \mu n$$

 μ_d (expt) = 0.857438

6)

- a) Are the following definition valid? Why? Why not?

 Const std string exclam = "!",

 Const std string message = "is this" + "valid" + exclam,
- b) In the shell model, a spin orbit interaction splits all energy levels except the s-type levels. Why does the s-type levels remains unsplit?
- c) Write a C++ program to countdown from 10 to -5
- d) Which of the following nucleon nucleon scattering is easiest to carry out experimentally? Give reasons?

n-p, p-n, n-n, p-p

How can you use nucleon-nucleon scattering to show that the nuclear forces are charge independent?