Total No. of Questions: 12]

[Total No. of Printed Pages: 4

[3661]-17

F. E. Examination - 2009

APPLIED SCIENCE - II

(2003 Course)

Time: 3 Hours]

[Max. Marks: 100

Instructions:

- (1) Answer any three questions from each section.
- (2) Answers to the **two sections** should be written in **separate** answer-books.
- (3) Black figures to the right indicate full marks.
- (4) Use of logarithmic tables, slide rule, mollier charts, electronic pocket calculator and steam tables is allowed.
- (5) Neat diagrams must be drawn wherever necessary.
- (6) Assume suitable data, is necessary.

Constants:

h =
$$6.63 \times 10^{-34}$$
 J-sec.
m_e = 9.1×10^{-31} kg.
e = 1.6×10^{-19} C.
c = 3×10^{8} m/sec.

SECTION - I

- Q.1) (A) State Heisenberg's Uncertainty Principle. Give one experiment to prove its validity. [06]
 - (B) Using Schrodinger's wave equation, find energy and wave unction of a particle in a rigid box. Show necessary waveforms. [07]
 - DeBroglie Wavelength of electrons in a monochromatic beam is 7.2×10^{-11} meters. Calculate the momentum and energy of electrons in the beam in electron volts. [04]

OR

Q.2)	(A)	Explain Davisson - Germer Experiment on electron diffraction and discuss the results.	[07]			
	(B)	Derive Schrodinger time independent wave equation.	[06]			
	(C)	Compute the lowest three permitted energy levels of an electron in an infinite potential well of width 1 A°.				
Q.3)	(A)	State the important properties of lasers. Explain the operation of Solid State Ruby Laser with the help of a neat labelled diagram.	[07]			
	(B)	(1) Explain the process of Holographic Recording.	[03]			
	(D)	(2) Explain Meissner effect.	[03]			
	(C)	Explain in brief the type I and type I Superconductors.	[04]			
	(0)	OR •.	[• .]			
Q.4)	(A)	Explain:	[06]			
•	` /	(1) Spontaneous Emission				
		(2) Stimulated Emission				
		(3) Population Inversion				
	(B)	(1) Define magnetic field intensity, susceptibility and permeability and show that $\mu_r = 1 + \chi$.	[04]			
		(2) Discuss applications of Ferrites.	[04]			
	(C)	State any six applications of Laser.	[03]			
Q.5)	(A)	Explain the classification of solids into conductors, insulators and semiconductors on the basis of energy band theory.	[06]			
	(B)	Explain with a neat diagram the principle, construction and working of a Bainbridge Mass Spectrograph.	[06]			
	(C)	Calculate the conductivity of extrinsic silicon at room temperature the donor impurity added is 1 in 10^8 silicon atoms.				
	_	Given: At room temperature,				
	7	$n_i = 1.5 \times 10^{10} \text{ per cm}^3$				
		$\mu_e = 1{,}300 \text{ cm}^2/\text{volt} - \text{sec.}$ and number of silicon atoms per unit volume = 5×10^{22} .	[04]			
OR						

Q.6)	(A)	Explain Hall effect. Obtain an expression for the Hall voltage. State applications of Hall effect.	[06]
	(B)	Develop a neat comparison between Optical Microscope and Electron Microscope.	[06]
	(C)	An electron starts at rest at the negative plate of a plane parallel capacitor across which is applied a direct voltage of 1,200 votls. The distance between the plates is 1 cm. How long will it take the electron to reach the positive plate? Find its velocity at that instant.	
		SECTION - II	
Q.7)	(A)	Explain the method for determination of Calorific Value of a Highly Volatile Fuel.	[07]
	(B)	What is Knocking? Explain how it is related with Octane Number and Cetane Number of a Fuel.	[06]
	(C)	A coal sample requires 20% excess air for complete combustion. Calculate weight of air for 120 kg coal if coal contains,	
		C = 81%, H = 4%, N = 1.5%, S = 1.2%, O = 3%.	[04]
Q.8)	(A)	What is Proximate Assaysis? How it is carried out? Give significance of percentage of the various components in a coal sample in this analysis.	[07]
	(B)	(1) Distinguish between low temperature carbonisation and high temperature carbonisation.	[03]
		(2) Calculate GCV and NCV of a coal if 1.3 gm of coal is burnt in Bomb calorimeter, raises temperature of 2 litres water in calorimeter by 4.65°C. Hydrogen percentage in coal is 2% and water equivalent is 690 gm.	[03]
	(C)	What is Rocket Propellent? Give important characteristics of good propellent.	[04]

Q.9)	(A)	Define Wet Corrosion. Explain Galvanic and Concentration Cell Corrosion with one example each.	[07]
	(B)	What is Secondary Battery? Explain the construction, reactions and applications of Lead Acid Battery.	[06]
	(C)	Distinguish between Anodic Coatings and Cathodic Coatings.	[04]
		OR	
Q.10)	(A)	What is Dry Corrosion? Explain mechanism involved in it by using suitable example.	[07]
	(B)	Describe 'Anodic Protection' of metal for the Corrosion Control.	[06]
	(C)	Describe method of Electroplating of metal.	[04]
Q.11)	(A)	Explain principle, instrumentation and working with the help of diagram for Atomic Absorption Spectroscopy.	[06]
	(B)	State the principle and technique involved in Thin Layer Chromatography.	[06]
	(C)	State the characteristics of Electromagnetic Radiation. OR	[04]
Q.12)	(A)	Explain experimental techniques of Column Chromatography.	[06]
	(B)	Give the principle and applications of Gas Chromatography.	[06]
	(C)	Calculate number of Vibrational Degrees of Freedom for following	
		molecules	[04]
		(1) NH3	
		(2) H_2O	
		(3) \mathcal{C}_{2}	
		(1) NH ₃ (2) H ₂ O (3) CO ₂ (N) C ₆ H ₆	
	1		
	1/2		