\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 B.E.Sem-I/II Examination June-July 2011

Subject code: 110008

Date: 18/06/11
Total Marks: 70
Subject Name: Mathematics-I
Time: 10:30am to 1:30pm

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 Do as directed.
(a) Show by the definition of $\operatorname{limit}, \lim _{x \rightarrow 1}(5 x-3)=2$
(b) For what value of k is the function

$$
f(x)=\left\{\begin{array}{l}
k x^{2} ; x \leq 2 \\
3 ; x>2
\end{array} \text { Continuous at } \mathrm{x}=2 ?\right.
$$

(c) If for the function f , given by
$f(x)=k x^{2}+7 x-4, f^{\prime}(5)=97$ find the value of k .
(d) Using Rolle's theorem, find points on the curve $y=16-x^{2}, x \in[-1,1]$; Where tangent is parallel to x-axis.
(e) Using Lagrange's mean value theorem, show that $\sin x<x$ for $x>0$.
(f) Use appropriate mean value theorem to prove

$$
\begin{aligned}
& \frac{\sin b-\sin a}{e^{b}-e^{a}}=\frac{\cos c}{e^{c}}, \text { for } a<c<b \text { and hence deduce that } \\
& e^{c} \sin x=\left(e^{x}-1\right) \cos c
\end{aligned}
$$

(g)

If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$,
find $\lim _{x \rightarrow 0} f(x)$ using Sandwich theorem.
Q. 2 (a) (i) Expand $\log x$ in power of $(x-1)$ by Taylor's theorem and hence find the value of $\log _{e} 1.1$
(ii) Find the maximum and minimum values of $f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$
(b) (i) State fundamental theorem for definite integral and using it, find the average value of $f(x)=3-\frac{3}{2} x$ on [0,2] and where f actually takes on this value at some point in the given domain.
(ii) Evaluate the improper integral $\int_{0}^{\infty} \frac{1}{x^{2}} d x$

OR

(b) (i) Test the convergence for following series
(1) $1+\frac{x}{2}+\frac{x^{2}}{3^{2}}+\frac{x^{3}}{4^{3}}+----\infty, x>0$
(2) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$
(ii)

Determine whether $\int_{\infty}^{-\infty} \frac{1}{1+x^{2}} d x$ converges ?
Q. 3 (a) Attempt the following.
(i) Discuss the continuity of the given function

$$
f(x, y)=\left\{\begin{array}{l}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}} ; x \neq 0, y \neq 0 \\
0 ; x=0, y=0
\end{array}\right.
$$

(ii) If $u=\log (\tan x+\tan y)$ then prove that $\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}=2$
(b) State and prove Euler's theorem on homogeneous function of two variables and apply it to evaluate

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y} \text { for } u=\frac{x^{3} y^{3}}{x^{3}+y^{3}}
$$

(c)

$$
\begin{aligned}
& \text { If } x=\sqrt{v w}, y=\sqrt{w u}, z=\sqrt{u v} \text { and } u=r \sin \theta \cos \phi, v=r \sin \theta \sin \phi \\
& w=r \cos \theta . \text { Evaluate } \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}
\end{aligned}
$$

OR

Q. 3 (a) Attempt the following.
(i)

Find $\frac{d y}{d x}$ when $y^{x^{y}}=\sin x$
(ii) If $u=u(y-z, z-x, x-y)$ then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
(b) Using Lagrange's method of undetermined multipliers, find the maximum value of $u=x^{p} y^{q} z^{r}$ when the variable $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are subject to the condition $a x+b y+c z=p+q+r$
(c) Examine $f(x, y)=x^{3}+y^{3}-3 a x y$ for maximum and minimum values.
Q. 4 (a) Evaluate $\iint(x+y)^{2} d x d y$ over the curve bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(b) Sketch the region of integration, change the order of integration and evaluate the integral $I=\int_{0}^{1-x} \int_{x^{2}}^{2 x} x y d x d y$
(c) Find the area lying inside the cardioid $r=a(1+\cos \theta)$ and outside the circle $r=a$, by double integration.

OR

Q. 4 (a) Evaluate the integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} d x d y d z$
(b) Using the transformation $x+y=u, y=u v$, show that
$\iint[x y(1-x-y)]^{\frac{1}{2}} d x d y=\frac{2 \pi}{105}$, integration being taken over the area of the triangle bounded by the lines $x=0, y=0, x+y=1$
(c) Find the volume of the cylinder $x^{2}+y^{2}-a x=0$ bounded by the planes $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{x}$.
Q. 5 (a) Determine the constants a and b so that the surface $5 x^{2}-2 y z-9 x=0$ be orthogonal to the surface $a x^{2} y+b z^{3}=4$ at the point ($1,-1,2$)
(b) Determine $f(r)$, so that the vector $f(r) \bar{r}$ is both Solenoidal and Irrotational.
(c) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=x y+y z+z x$. Show that $\nabla u, \nabla v, \nabla w$ are coplanar.

OR

Q. 5 (a) State Green's theorem and using it, evaluate
$\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$; where c is the boundary of the region
Bounded by $x \geq 0, y \leq 0$ and $2 x-3 y=6$
(b) Apply Stoke's theorem to find the value of $\int_{C}(y d x+z d y+x d z)$;

Where c is the curve of intersection of $x^{2}+y^{2}+z^{2}=a^{2}$ and $x+z=a$
(c) Evaluate $\oint_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$; where $c=c_{1} \cup c_{2}$ with $c_{1}: x^{2}+y^{2}=1$ and $c_{2}: x= \pm 2, y= \pm 2$

