GUJARAT TECHNOLOGICAL UNIVERSITYBE SEM- I / II Winter Examination-Dec.-2011

Subject code: 110008 Date: 23/12/2011

Subject Name: Mathematics-I

Time: 10.30 am -1.30 pm Total marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) (i) Verify Rolle's theorem for
$$f(x) = \frac{\sin x}{e^x}$$
 in $(0, \pi)$.

(ii) Find the maximum and minimum values of
$$f(x) = 8x^5 - 15x^4 + 10x^2$$
.

(b) (i) Evaluate
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
.

(ii) Evaluate
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$$
.

- (iii) Expand e^x in the powers of (x-1) up to four terms.
- Q.2 (a) Discuss the convergence of the following:

(i)
$$\sum_{n=1}^{\infty} \left[\sqrt{n^2 + 1} - n \right]$$
 02

(ii)
$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots + \cos \infty$$
 02

(iii)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
 03

- **(b)** (i) Find the area of the loop of the curve $ay^2 = x^2(a-x)$. **04**
 - (ii) Find the entire length of the Cardiod $r = a(1 + \cos \theta)$. 03

Q.3 (a) (i) If
$$f(x, y) = \frac{y - x}{y + x}$$
 and $f(0,0) = 0$, discuss the continuity of $f(x, y)$ at $(0, 0)$.

(ii) State Euler's theorem on homogeneous functions.

Verify Euler's theorem when
$$f(x, y) = \frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{x^{\frac{1}{5}} + y^{\frac{1}{5}}}$$

Show that
$$\frac{\partial^2 z}{\partial x \partial y} = -[x \log(ex)]^{-1}$$
 at the point $x = y = z$ for the surface $x^x y^y z^z = c$.

1

Q.4 (a) If
$$u = f(r, s, t)$$
 and $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

- **(b)** Determine the points where the function **07** $f(x, y) = x^3 + y^3 3axy$ has a maxima or minima.
- Q.5 (a) Change to polar coordinates and then evaluate 07 $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$.
 - **(b)** Change the order of integration and then evaluate **07** $\iint_{0}^{\infty} xe^{\frac{-x^2}{y}} dy dx$.
- Q.6 (a) Show by double integration that area between the parabolas 07 $y^2=4ax$ and $x^2=4ay$ is $\frac{16}{3}a^2$.
 - (b) Find the volume under the plane x + y + z = 6 and above the triangle in the xy-plane bounded by 2x = 3y, y=0, x=3.
- Q.7 (a) (i) Find the unit vector normal to the surface $x^2y + 2xz = 4$ 03 at the point (2, -2, 4).
 - (ii) Find the directional derivative of $f(x, y, z) = x^2 y^2 + 2z^2$ **04** at the point (1, 2, 3) in the direction $4\mathbf{i} 2\mathbf{j} + \mathbf{k}$. In what direction will it be maximum? Also find the maximum value.
 - (b) State Green theorem in the plane. Use it to evaluate the 07 integral $\int_{c} [(2x^2 + y^2)dx + (x^2 + y^2)dy]$ where c boundary of the surface xy-plane enclosed by the x-axis and the semicircle $y = \sqrt{(1-x^2)}$.
