\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM- I / II Winter Examination-Dec.-2011
Subject code: 110008
Date: 23/12/2011
Subject Name: Mathematics-I
Time: $\mathbf{1 0 . 3 0} \mathbf{~ a m ~ - 1 . 3 0 ~ p m}$
Total marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) (i) Verify Rolle's theorem for $f(x)=\frac{\sin x}{e^{x}}$ in $(0, \pi)$.
(ii) Find the maximum and minimum values of 04 $f(x)=8 x^{5}-15 x^{4}+10 x^{2}$.
(b) (i) Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.
(ii) Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\tan x}$.
(iii) Expand e^{x} in the powers of $(x-1)$ up to four terms.
Q. 2 (a) Discuss the convergence of the following:
(i) $\sum_{n=1}^{\infty}\left[\sqrt{n^{2}+1}-n\right] \quad 02$
(ii) $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+\cdots$ to ∞ 02
(iii) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

03
(b) (i) Find the area of the loop of the curve $a y^{2}=x^{2}(a-x)$. 04
(ii) Find the entire length of the Cardiod $r=a(1+\cos \theta)$. $\quad \mathbf{0 3}$
Q. 3 (a) (i) If $f(x, y)=\frac{y-x}{y+x}$ and $f(0,0)=0$, discuss the continuity of $f(x, y)$ at $(0,0)$.
(ii) State Euler's theorem on homogeneous functions.

$$
\text { Verify Euler's theorem when } f(x, y)=\frac{x^{\frac{1}{4}}+y^{\frac{1}{4}}}{x^{\frac{1}{5}}+y^{\frac{1}{5}}}
$$

(b) Show that $\frac{\partial^{2} z}{\partial x \partial y}=-[x \log (e x)]^{-1}$ at the point $x=y=z$ for the surface $x^{x} y^{y} z^{z}=c$.
Q. 4 (a) If $u=f(r, s, t)$ and $r=\frac{x}{y}, s=\frac{y}{z}, t=\frac{z}{x}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
(b) Determine the points where the function 07 $f(x, y)=x^{3}+y^{3}-3 a x y$ has a maxima or minima.
Q. 5 (a) Change to polar coordinates and then evaluate 07 $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} d x d y$.
(b) Change the order of integration and then evaluate $\mathbf{0 7}$ $\int_{0}^{\infty} \int_{0}^{x} x e^{\frac{-x^{2}}{y}} d y d x$.
Q. 6 (a) Show by double integration that area between the parabolas

07 $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
(b) Find the volume under the plane $x+y+z=6$ and above the triangle in the $x y$-plane bounded by $2 x=3 y, y=0, x=3$.
Q. 7 (a) (i) Find the unit vector normal to the surface $x^{2} y+2 x z=4 \quad 03$ at the point $(2,-2,4)$.
(ii) Find the directional derivative of $f(x, y, z)=x^{2}-y^{2}+2 z^{2}$ at the point $(1,2,3)$ in the direction $4 \boldsymbol{i}-2 \boldsymbol{j}+\boldsymbol{k}$. In what direction will it be maximum? Also find the maximum value.
(b) State Green theorem in the plane. Use it to evaluate the $\mathbf{0 7}$ integral $\int_{c}\left[\left(2 x^{2}+y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where c boundary of the surface $x y$-plane enclosed by the x-axis and the semicircle $y=\sqrt{\left(1-x^{2}\right)}$.

