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Seat No.: _____                                                         Enrolment No.______ 
   

GUJARAT TECHNOLOGICAL  UNIVERSITY 
B.E. Sem-I   Examination January 2010 

 

Subject code: 110008         Subject �ame: Mathematics – I   
Date: 11 / 01 /2010                        Time: 11.00 am – 02.00 pm   

                                Total Marks: 70 

 

Instructions: 
1. Attempt all questions.  

2. Make suitable assumptions wherever necessary. 

3. Figures to the right indicate full marks. 

 

Q1. (a) (i) Find the value of k so that the function given below is continuous at a given  

point x=2. 
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  (ii) State Sandwich theorem and using it find )(lim
0

xg
x→

if xxgx sec3)(3 3 ≤≤−  

for all x. 
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 (b) (i) If )(xf and )(xg  are continuous functions for ,10 ≤≤ x  could 

)()( xgxf possibly be discontinuous at a point in the interval [ ]1,0 ? Give 

reasons for your answer. 
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  (ii) If ( ) ℜ→baf ,: is differentiable at ( )bac ,∈ , then show that 

h

hcfhcf

h 2

)()(
lim

0

−−+
+→

 exists and equals ).(' cf Is the converse true? 
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(c) (i) Using Mean Value Theorem, Prove .0,1
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  (ii) For what values of ma, and b does the function  
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satisfy the hypothesis of the Mean Value Theorem on the interval [ ]2,0 . 
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Q2. (a) (i) Find the area of the region between the x-axis and the graph of 

.21,2)( 23 ≤≤−−−= xxxxxf  
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(ii) Using Fundamental Theorem of Calculus find 
dx

dy
 if ∫=

2

1

cos

x

dtty . 
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(iii) Evaluate the integral ∫
∞

+
0

2 1x

dx
. 

 

02 

 (b) (i) Find the absolute maximum and minimum values of the function on the given 

interval 74,5)( ≤≤−= tttf . 
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  (ii) Find the Taylor’s series expansion of .2,42)( 3 =+−= axxxf  02 
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  (iii) The geometric mean of two positive numbers a and b is the number ab . 

Show that the value of c in the conclusion of the Mean Value Theorem for 

x
xf 1)( = on an interval of positive numbers ],[ ba  is .abc =    

02 

   OR  

 (b) (i) Test the convergence or divergence of the following series (A�Y TWO) 04 
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(ii) Using Riemann Sum show that ( )22
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Q3. (a)  Suppose that ),(),(),,( srhyandsrgxyxfw ===  then write the chain rule 

for 
r

w

∂
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 and 
s

w

∂
∂

. Also evaluate 
r

w
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 and 
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 in terms of r and s if 

22 zyxw ++= , ,
s
rx =  .2,ln2 rzsry =+=  
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(i) Show that  dxxf∫
∞

∞−

)(  may not equal to ∫
−

∞→

b

b
b

dxxf )(lim . 

 

02 

  (ii) 
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(c) 

 

Find the length of the curve ∫=
x

dtty

0

2cos  from 0=x  to .
4

π=x   
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OR 

Q3. (a)  Let ),,( zyxfw = be a function of three independent variables, write the 

formal definition of the partial derivative for 
z

f
∂

∂
 at ( )000 ,, zyx . Using this 

definition find 
z

f
∂

∂
 at ( )3,2,1  for 22),,( yzxzyxf = . 
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 (b) (i) Show that  
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is continuous at every point except at the origin. 

03 

  (ii) Find 
dt

dw  if .,sin,cos, tztytxzxyw ===+=  02 

 (c)  Find the volume of the solid generated by revolving the region bounded by 

xy =  and the lines 2=y  and 0=x  about the line .2=y  

04 

Q4. (a) (i) Evaluate the integral ∫ ∫
−

+
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dydxyx  03 

 

 

(ii) Find the volume of the region that lies under the paraboloid 22 yxz +=  and 

above the triangle enclosed by the lines 20, =+== yxandxxy  in the xy – 

plane. 

04 
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 (b)  Find the equations for tangent plane and normal line at the point ( )1,1,1  on the 

surface .3222 =++ zyx  
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 (c)  Find the area of the region that lies inside the cardioid ϑcos1+=r  and 

outside the circle .1=r   
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   OR  

Q4. (a) 

 

Evaluate ( )∫ ∫ ∫ +
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0 0
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dzdrdrzr

π
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(b) (i) 
Integrate ( )

22

22 )ln(
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+

+
=  over the region eyx ≤+≤ 221  by changing 

to polar coordinates 
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  (ii) Find the derivative of zxyxzyxf −−= 23),,(  at )0,1,1(0P  in the direction 

of 
→→→→

+−= kjiv 632 . 

02 

 (c)  Find the volume of the prism whose base is the triangle in xy  - plane 

bounded by the x – axis and the line xy =  and 1=x  and whose top lies in 

the plane .3),( yxyxfz −−== . 
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Q5. (a)  Integrate ( ) 2,, zyxzyxf −+= over the path 21 CCC ∪= from 

)1,1,1()0,0,0( to with  
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 (b)  State Green’s theorem and also evaluate the integral ( ) ( )∫ +++
C

dyxydxxy 26  

where :C The circle ( ) ( ) .432 22 =−+− yx  
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 (c)  Trace the curve .2cos22 ϑar =  04 

   OR  

Q5. (a)  Use Green’s theorem to evaluate the integral  ( )∫ +
C

dyxdxy 22    where  

:C  The triangle bounded by 0=x , 1=+ yx , =y 0. 
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(b) 

 
Find the flux of 

→→
+= kzjyzF 2  outward through the surface S cut from the 

cylinder ,0,122 ≥=+ zzy by the planes 0=x and .1=x  
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 (c)  Use Stoke’s theorem to evaluate ∫C drF .  if  

→→→
++−++= kzyjzxiyxF )()2()(  and C is the boundary of the triangle 

( ) ( )0,3,0,0,0,2  and ( )6,0,0 . 
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