Third Year B.Sc. Degree Examination Aug/Sept 2009 Directorate of Distance Education Course

Directorate of Distance Education Cour

MATHEMATICS: (PAPER - V) Time: 3 Hours Max. Marks: 90 Note: Answer any SIX of the following. PART - A i) Separate into real and imaginary parts of exp $(5 + i\frac{\pi}{2})$ 1. 2 a) ii) Find the derivative of f(z) = z2 at 1+i. 2 Find the equation of the circle passing through the points 1+i, 2i, 1-i. Also find b) its centre and radius. Find an analytic function whose imaginary part is $V = e^x$ (x siny + y cosy). 6 C) 2. a) Show that u = cosx coshv is harmonic. 2 ii) Evaluate | z²dz where 'c' denotes the straight line path y=x from (0,0) to (1,1). 2 Show that $f(z) = e^z$ is analytic and $f^1(z)$ in terms of z. b) 5 (3x+y)dx + (2y-x) dy along c) i) the curve v=x²+1 ii) the line joining (0,1) and (2,5) 6 $\int_{0}^{\pi} \frac{\sin{(\pi z^{2})} + \cos{(\pi z^{2})}}{(z-1)(z-2)} dz$ 3. Evaluate 2 Where G: | z | = 3 Find the fixed points of the transformation $W = \frac{2z-1}{z}$ ii) 2 State and prove Cauchy's integral formula for the first derivative of an analytic function. 5 Find a bilinear transformation which maps ∞, i, 0, onto 0, i, ∞ C) 6 4. Evaluate Δ³ e^{ax}, where 'h' is the interval of differencing. a) 2 ii) Construct the forward difference table of the polynomial $f(x)=x^2+x+1$ for the values x=0(1)4. 2 b) Find a cubic polynomial which takes the values 1 2 3 4 10 38 196 f(x): 0 96 Using Newton's Gregory forward difference interpolation formula. 5

c) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ of the function f(x) at x=1.5, given

x :	1.5	2	2.5	3.	3.5	4
f(x) :	3.375	7	13.625	24	38.875	59

6

PART - B

5. a) i) Find L (et cost).

2

 ii) If L {f(t)} = f(s) then prove that L {e^{at} f(t)} = f(s-a)

2

b) Find the laplace transform of the periodic function F(t) with period 2π such that $F(t) = \begin{cases} sint & , \ 0 < t < \pi \\ O & , \ \pi < t < 2\pi \end{cases}$

c) Express the function F(t) in terms of unit step function and find L{F(t)}, where

$$F(t) = \begin{cases} t^2 & ,0 < t < 2 \\ t-1 & ,2 < t < 3 \\ T & ,t > 3 \end{cases}$$

6. a) i) Find L⁻¹ $\left\{ \frac{s-1}{(s-1)^2 + 2^2} \right\}$

2

ii) Find L{F(t)} from the integral equation

$$F(t) = 4t - 3 \int_{0}^{t} F(\beta) \sin(t - \beta) d\beta$$

b) Show that
$$L^{-1}\left\{\frac{2a^3}{(s^2+a^2)^2}\right\} = \sin at - at \cos at$$

5

2

c) Solve the initial value problem

$$x'''(t) + 2x'(t) + x(t) = 3t e^{-t}$$
, given that $x(0)=4$ and $x'(0)=2$.

7. a) i) Use Trapezoidal rule to evaluate y_xdx, given that

x	0	1	2	3	4	5	6
y _x	0.135	0.158	0.169	0.179	0.192	0.214	0.230

ii) Show that the real root of the equation $x^3-x-4=0$ lies between 1 and 2.

b) Using Newton Raphson method to find a real root of the equation x³-3x-5=0, carry out four iterations.

2

- c) Using Simpson's $\frac{3th}{8}$ rule, evaluate $\int_{2}^{8} \frac{dx}{1+x}$ accurate upto three decimal places, dividing the interval (2,8) into six equal parts.
- 8. a) i) Evaluate : $\int_{0}^{0.6} \frac{dx}{1+x^2}$ from the following data using Weddle's rule.

x	0	0.1	0.2	0.3	0.4	0.5	0.6
у	1	0.9901	0.9615	0.9174	0.8621	0.8	0.7353

- ii) Using Euler's method, solve $\frac{dy}{dx} = x+y$, find y(0.2) given y=1 when x=0 and also h=0.2.
- b) Solve: $\frac{dy}{dx} = x^2 + y^2$, using Picard's method of successive approximations, given y(0)=0, upto third approximations, find y⁽³⁾ at x=0.4. 5
- c) Solve by using Runge-Kutta fourth order method, evaluate $\frac{dy}{dx} = \frac{x+y}{2}$ with the initial condition y(1)=3 with h=0.2 at x=1.2.