20.1.0g

Ex/BESUS/AM-101A/09

B.Arch. Part-I 1st Semester Examination, 2009\

Engineering Mechanics (AM-101A)

Time: 3 hours

Full Marks: 70

Use separate answerscript for each half.

Answer SIX questions, taking THREE from each half.

Two marks are reserved for neatness in each half.

FIRST HALF

- 1. a) Referring to Fig. Q1a, find the value of the angle φ defining the position of the point B where the particle will jump clear of the cylindrical surface after the string OA has been cut. Neglect friction.
 - b) A ball of weight W is supported in a vertical plane as shown in Fig. Q1b. Find the compressive force in the bar BC: (a) just before the string AB is cut and (b) just after the string AB is cut.

- 2. a) Prove that the equation of the path of the projectile is parabola.
 - b) An airplane is moving with a horizontal velocity v at a height h above a level. If a projectile is fired from a gun at the instant when the plane is vertically above the gun, what must be the angle of elevation α and that is the minimum initial velocity v_0 of the projectile in order to hit the airplane?
- 3. In Fig. Q3, a small car of weight W starts from rest at A and rolls without friction along an inclined plane to B where it strikes a block also of weight W and initially at rest. Assuming a plastic impact at B, the car and block will move from B to C as one particle. If the coefficient of friction between the block and plane is 0.5, calculate the distance x to the point C where the bodies come to rest.

Fig.Q.3

4. A particle of mass m moves rectilinearly under the action of a force X = F(t) as represented by the force-time diagram OCB in the Fig. Q4. If the curve is a parabola, find the displacement at time t_1 .

SECOND HALF

- 5. a) Explain the term 'equilibrium'.
 - b) Two smooth circular cylinders, each of weight $W = 100 \,\mathrm{N}$ and radius $r = 6 \,\mathrm{cm}$, are connected at their centres by a string AB of length $l = 16 \,\mathrm{cm}$ and rest upon a horizontal plane, supporting above them a third cylinder of weight $Q = 200 \,\mathrm{N}$ and radius $r = 6 \,\mathrm{cm}$ (Fig. Q.5). Find the force S in the string AB and the pressures induced on the floors at the points of contact D and E. Draw the vector diagram of the three ball system isolated from the floor as a whole.

Fig.Q.5

- 6. a) State theorem of Varignon and explain its applicability.
 - b) A beam AB, hinged at A and supported at B by a vertical bar BC, is subjected to the action of a force P as shown in Fig.Q.6. Assuming ideal hinges at A, B and C; find the force S in bar BC neglecting the weight of beam. [11]

7. Two blocks of weights W_1 and W_2 rest on a rough inclined plane and are connected by a short piece of string as shown in Fig.Q.7. If the co-efficients of friction are $\mu_1 = 0.2$ and $\mu_2 = 0.3$ respectively, find the angle of inclination of the plane for which sliding will impend. Assume $W_1 = W_2 = 5N$.

Fig.Q.7

Determine the axial force in each bar of the plane truss supported and loaded as shown in Fig.Q.8. ABCD is square and AC is horizontal. [11]

Fig.Q.8