1

GUJARAT TECHNOLOGICAL UNIVERSITY

M.E Sem-I Examination January 2010

Subject code: 710201 Date: 20 / 01 / 2010

Subject Name: Computer Algorithm Time: 12.00 – 2.30 pm **Total Marks: 60**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Find out complexity of $T(n) = 3T(n/2) + n^2$	06
	(b)	T (n) = $16T(n/2) + n$, T (n) = $16T(n/4) + n$, using master method in terms of O (Big Oh) Explain worst case and Best case complexity of INSERTION sort.	06
Q.2	(a)	Difference between red-black tree and AVL tree. (In terms of application) with example.	06
	(b)	If 48 bit word is given for RADIX sort with r=24, How many maximum passes would be required for Radix sort to sort approximately 3000 nos. Prove your answer. How many passes would be required for Merge sort in above case?	06
		OR	
	(b)	Create AVL tree for following sequence of insertion Jan, Feb, Dec	06
Q.3	(a)	Explain the utilization of augmented data structure with Information and Rank in below given example.	06
	(b)	$\frac{C}{5}$ Generate equation for chain Matrix multiplication using Dynamic programming and find out minimum no of multiplication required for multiplying: A [50 × 10], B [10 × 89] and C [89 × 15].	06
		OR	
Q.3	(a)	For a graph $G = (V, E)$ with V no of Vertices and E no of Edges. Where V=12 and E=23. What kind of storage would be used to store Information of Adjacent Nodes? What would be storage requirement/complexity for maintaining information for adjacent L ist and adjacent Matrix?	06
	(b)	Explain different types of Edges in DFS with suitable example.	06
Q.4	(a) (b)	Explain Prim's algorithm with time and space complexity. Describe a naive algorithm for solving the Hamiltonian-cycle problem with running time complexity?	06 06
		OR	
Q.4	(a)	Explain how Parallel algorithms differ to Sequential algorithms. Write Parallel algorithms and Sequential algorithms algorithm to sum n no's.	06

06

	(b)	 Parallel radix sort algorithm A) Extend the parallel radix sort algorithm where the number <i>n</i> of elements to be sorted is larger than the number <i>p</i> of processors. 	06
Q.5	(a)	Compare and contrast Binomial Heap and Fibonacci Heap. Explain procedure of merging two Binomial Heaps.	06
	(b)	Explain data structure of a Fibonacci Heap using suitable example.	06
		OR	
Q.5	(a)	How Disjoint Set Forest can be implemented? Provide related algorithm.	06
	(b)	Write an algorithm to delete a key from B-tree. Trace your algorithm on suitable example.	06
