GUJARAT TECHNOLOGICAL UNIVERSITY

M.E Sem-I Regular Examination January / February 2011

Subject code: 710201N
Date: 31 /01/2011

Subject Name: Computer Algorithm
Time: 02.30 pm - 05.00 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Prove that worst case complexity of quick sort and insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
(b) Solve the following recurrences.
1) $T(n)=4 T(n / 2)+n \log n$, where n is power of two.
2) $T(n)=T(n-1)+T(n-2)$, when n is greater than 1 , else $T(n)=n$, when n is 0,1
Q. 2 (a) How is heuristic Algorithm more efficient than dynamic programming? Explain 07 with example.
(b) Greedy Approach is faster than dynamic programming? Justify with example.

OR

(b) Explain interval tree and its searching complexity?07
Q. 3 (a) Show the B-tree that results when inserting R,Y,F,X,A,M,C,D,E,T,H,V,L,W,G(in 07 that order) branching factor of $t=3$. You need only draw the trees just before and after each split. Show the B-tree the results when deleting A , then deleting V and then deleting P from the following B-tree with a minimum branching factor of $t=2$.
(b) Difference between AVL tree and Red-black tree (In terms of height and complexity). Insert the following sequence in AVL tree and Red-black tree: $12,4,19,16,21,1,4,7,9$

OR

Q. 3 (a) What is the complexity of deleting and inserting an element from binomial heap?

Specify any example where binomial heap is preferred than normal heap?
(b) Explain Traveling sales man problem? It is a NP class problem? Justify your answer with proof.
Q. 4 (a) Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph which is weighted, undirected, and connected. Suppose G contains a unique edge having the largest weight. Let $\mathrm{e}_{\text {max }}$ be this edge. Suppose removing $\mathrm{e}_{\text {max }}$ in G does not disconnect G. Prove that any minimum spanning tree of G must not contain the edge $e_{\text {max }}$.
(b) Explain kruskal's algorithm in detail with analysis of space complexity?

OR

Q. 4 (a) Create a Fibonacci-heap for following list

$<23,15,10,35,40,60,30,47,3,33,51,90,70,44>$ After creation, Decrease the key 47 to 19 and 33 to 2 and show above all operation with use of auxiliary Array.
(b) Find the longest common subsequence from the given two sequence of characters,

$$
\text { 1) } \mathrm{P}=(\mathrm{A}, \mathrm{BC}, \mathrm{D}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{C}, \mathrm{D}, \mathrm{D}) ; \mathrm{Q}=(\mathrm{C}, \mathrm{~B}, \mathrm{~A}, \mathrm{~F})
$$

2) $P=(1,0,0,1,0,1,1,0,1,1,0,1) ; \quad Q=(0,1,1,0)$
Q. 5 (a) Explain Insertion sort in Parallel Environment and Calculate Complexity. 07
(b) Explain radix sort in Parallel Environment and Calculate Complexity.

OR

Q. 5 (a) Find an optimal solution for the knapsack Instances
$\mathrm{n}=7, \mathrm{M}=15\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{7}\right)=(10,5,15,7,6,18,3)$ and $\left(W_{1}, W_{2}, \ldots, W_{7}\right)=(2,3,5,7,1,4,1)$
(b) Derive recurrence for chained matrix multiplication and solve for following 07 sequence: 10 X 15, 15 X 25, 25 X 30, 30×35

