

ENGINEERING & TECHNOLOGY EXAMINATIONS, DECEMBER - 2005

MECHANICAL SCIENCES

SEMESTER - 1

Time: 3 Hours |

[Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Note: Answer Question No. 1 which is compulsory and any six from the remaining.

1. Choose the correct answers with proper justification:

 $5 \times 2 = 10$

- a) First area moments (of a plane surface area) about centroidal axes is equal to
 - i) zero
 - ii) non-zero.
- b) For a two-dimensional equilibrium (static) problem, the maximum number of unknowns that can be evaluated using equilibrium equations are
 - i) one
 - ii) three
 - iii) six.
- c) Thermal stress is induced within a material due to
 - i) free expansion
 - ii) free contraction
 - iii) free expansion or contraction
 - iv) restricted expansion or contraction
 - v) none of these.
- d) When a body slides down an inclined surface (of inclination θ) the acceleration 'f' of the body is
 - i) f = g
 - ii) $f = g \sin \theta$
 - iii) $f = g \cos \theta$
 - iv) $f = q \tan \theta$.
- e) The kinetic energy of a body rotating with an angular speed ω depends on
 - i) w only
 - ii) ω^2 only
 - iii) mass only
 - iv) the distribution of mass and angular speed
 - v) all of these.

- 2. a) State and prove perpendicular axis theorem of area moment of inertia.
 - .
 - b) Locate the centroid of the quadrant of a circle of radius r (fig. 1)

6

Fig. 1

3. a) State the laws of static friction.

3

b) A block of weight $W_1 = 1290$ N rests on a horizontal surface and supports another block of weight $W_2 = 570$ N on top of it as shown in fig. 2. Block of weight W_2 is attached to a vertical wall by an inclined string AB. Find the force P applied to the lower block, that will be necessary to cause the slipping to impend. Given:

Coefficient of friction between blocks (1) and (2) = 0.25

Coefficient of friction between (1) and horizontal surface = 0.40.

7

Fig. 2

- 4. a) State and prove Lami's theorem.
 - b) Define free body diagram.

3 2

c) Two cylinders of diameters 60 mm and 30 mm weighing 160 N and 40 N respectively are placed as shown. Assuming all the contact surfaces to be smooth, find the reactions at A, B and C.

Fig. 3

a) State the principle of virtual work.

b) Using the principle of virtual work, find the value of the angle θ defining the configuration of equilibrium of the system as shown in fig. 4. The balls D and E can slide freely along the bars AC and BC but the string DE connecting them is inextensible.

Fig. 4

6. a) Define Hooke's law.

b) A bronze bar 3 m long with a cross-sectional area of 320 mm 2 is placed between two rigid walls as shown in fig. 5. At a temperature of -20° C, the gap $\Delta = 2.5$ mm. Find the temperature at which the compressive stress in the bar will be $\sigma = 35$ MPa. Use $\alpha = 18 \times 10^{-6}$ m/ Φ °C and E = 80 GPa.

3

- a) State Coulomb's Law of friction.
 - b) A block of weight $W_1 = 500$ N rests on a horizontal surface and supports on top of it another block of weight $W_2 = 100$ N. The block W_2 is attached to a vertical wall by the inclined string AB. Find the magnitude of the horizontal force p applied to the lower block as shown in fig. 6 that will be necessary to cause slipping to impend. The co-efficient of static friction for all contiguous surfaces is $\mu = 0.3$.

Fig. 6

- 8. a) A particle moving in the x-y plane undergoes a displacement $\overline{S} = (4\overline{i} + 6\overline{j})$ m with a constant force $\overline{F} = (-5\overline{i} + 10\overline{j})$ N acting on it. Calculate the work done, magnitude of force and magnitude of displacement.
 - b) A 5 kg block slides from rest at point A along a frictionless inclined plane making an angle 25 with horizontal. Determine the speed of the block at B at a distance of 3 m from A.
- a) Distinguish between particle and rigid body.
 - b) A ball is dropped vertically on to a 20° inclined plane at A. The direction of rebound forms an angle of 35° with vertical. Knowing that the ball strikes the inclined plane at B, determine
 - i) the velocity of rebound at A.
 - ii) the time required for the ball to travel from A to B.

8

