First Semester B.E. Degree Examination, June-July 2009 Engineering Mathematics - I

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any Five full questions, choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet.
- 3. Answer to the objective type questions on sheets other than OMR will not be valued.

i) The nth derivative of $\frac{1}{(ax+b)^2}$ is

(A)
$$\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$$

(A)
$$\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$$
 (B) $\frac{(-1)^n n + 1! a^n}{(ax+b)^{n+2}}$ (C) $\frac{n + 1! a^n}{(ax+b)^n}$ (D) $\frac{n! a^n}{(ax+b)^{n+1}}$

(C)
$$\frac{n+1!a^n}{(ax+b)^n}$$

(D)
$$\frac{n!a^n}{(ax+b)^{n+1}}$$

ii) If $y^2 = f(x)$, a polynomial of degrees 3, then $2\frac{d}{dx}\left(y^3 \frac{d^2y}{dx^2}\right)$ equals

(A)
$$f''(x) + f''(x)$$
 (B) $f(x)f''(x)$

(B)
$$f(x)f''(x)$$

(C)
$$f(x)f'''(x)$$
 (D) $f'''(x)f(x)$

(D)
$$f''(x)f(x)$$

iii) The Pedal equation in polar coordinate system

(A)
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$$
 (B) $|\phi_1 - \phi_2|$ (C) $\tan \phi - r \frac{d\theta}{dr}$ (D) $\cot \phi = r \frac{dr}{d\theta}$

(B)
$$|\phi_1 - \phi_2|$$

(C)
$$\tan \phi - r \frac{d\theta}{dr}$$
 (

(D)
$$\cot \phi = r \frac{dr}{d\theta}$$

iv) The curve $r = \frac{a}{1+\cos\theta}$ intersect orthogonally with the following curve

(A)
$$r = \frac{b}{1-\cos\theta}$$

(B)
$$r = \frac{b}{1-\sin\theta}$$

(C)
$$r = \frac{c}{1+\sin\theta}$$

(A)
$$r = \frac{b}{1-\cos\theta}$$
 (B) $r = \frac{b}{1-\sin\theta}$ (C) $r = \frac{c}{1+\sin\theta}$ (D) $r = \frac{d}{1+\cos^2\theta}$

(04 Marks)

Find the nth derivative of $y = \cosh x \sin x$

(04 Marks)

c. If
$$y = \left[x + \sqrt{x^2 + 1}\right]^m$$
 prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$

(06 Marks)

Show that the pairs of curves $r = a(1+\cos\theta) \& r = b(1-\cos\theta)$ intersect orthogonally.

(06 Marks)

i) If $f(x,y) = \frac{1}{x^3} + \frac{1}{v^3} + \frac{1}{x^3 + v^3}$, then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is

(D)
$$-3i$$

(A) 0 (B) 3f (C) 9 ii) If u = f(x-y, y-z, z-x), then $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$

iii) If an error of 1% is made in measuring its base and height, the percentage error in the area of a triangle is

(A) 0.2%

(B) 1%

(C) 2%

iv) In polar coordinates, $x = r\cos\theta$, $y = r\sin\theta$ then $\partial(x,y)/\partial(r,\theta)$ is equal to

(04 Marks)

(A) r^3 (B) r^2 (C) r (D) - rIf $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$. (04 Marks)

If $u = x^2 - y^2$, v = 2xy and $x = r\cos\theta$, $y = r\sin\theta$ then determine the Jacobian $\frac{\partial(u, v)}{\partial(r, \theta)}$. (06 Marks)

Two sides of a triangle are 10cm & 12cm respectively, the angle between them is measured as 15° with an error of 15 mins. Find the error in the calculated length of the third side of the (06 Marks) triangle due to error in the angle.

3	a.	i)	The value of the definite integral $\int_{1}^{+1} x dx$ is equal to					
		ii)	(A) 0 The asymptote for the (A) $x + y + a = 0$	(B) 1 he curve $x^3 + y^3 = 3$ (B) $x - y - a = 0$	(C) π/2 Baxy is equal to (C) No asymptotes	(D) $\pi/4$ (D) $x + y - a =$	0	
		iii)	If $I_n = \int_{0}^{\pi/4} \cot^n \theta d\theta$,	then $n(I_{n-1}+I_{n+1})$ is	equal to		-	
			(A) 0	(B) 1	(C) 3	(D) None of th	ese.	
		iv)	(A) 0 The value of the def	finite integral $\int_{0}^{\infty} \frac{x}{(1+x)^2}$	$\frac{x^2}{(x^2)^{\frac{1}{2}}}$ dx is equal to			
	b.		(A) 4/15 in the reduction form	(B) 2π/15	(C) 2/15	(D) 15/2	(04 Marks) (04 Marks)	
	c.	Eval	uate $\int_{x \sin^2 x \cos^4 x}$	dx .			(06 Marks)	
	d.	Trac	e the curve $y^2(a-x) =$	x^3 , $a > 0$.	•		(06 Marks)	
4	a.	i)	The volume general between $y = 0 & y = 0$		ola $y^2 = 4ax$ when			
			$(A) \frac{2\pi a^3}{5}$	Ja	2	(D) $\frac{10\pi^2 a^3}{5}$		
		ii)	The entire length of (A) 40	the cardioid $r = 5(1)$ (B) 30	(C) 20	(D) 5	-	
		iii)	If $x = x(t)$, $y = y(t)$	hen ds/d <mark>t is equal t</mark> e				
			(A) $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$	(B) $\sqrt{\left(\frac{dx}{dt}\right)^2 - \left(\frac{dy}{dt}\right)^2}$	(C) $\sqrt{1+\left(\frac{dy}{dx}\right)^2}$	(D) None of	these	
		iv)	$\frac{d}{d\alpha} \left[\int_{a}^{b} f(x, \alpha) dx \right] $ is eq	qual to				
			(A) $\int_{a}^{b} \frac{d}{d\alpha} f(x,\alpha) dx$	(B) $\int_{a}^{b} \frac{\partial}{\partial \alpha} f(x, \alpha) dx$	(C) $\int_{b}^{a} \frac{\partial}{\partial \alpha} f(x,\alpha) dx$ (D)	0 ((04 Marks)	
	b.	Find	$ds/d\theta$ and ds/dr for the	he curve $r = a (1 - c)$	cosθ).		(04 Marks)	
	c.	Find the surface area of the solid generated by revolving the cycloid $x = a(t + y=a(1+\cos t))$ (06 M						
	d.	Give	In that $\int_{0}^{\pi} \frac{dx}{\alpha - \cos x} = \sqrt{\frac{1}{\sqrt{1 + \frac{1}{2}}}}$	$\frac{\pi}{\alpha^2 - 1}$, hence evalu	tate $\int_{0}^{\pi} \frac{dx}{(\alpha - \cos x)^{2}}$		(06 Marks)	
				PART - I	<u>B</u>			
5	a.	i)	The solution of the	differential equation	$n \frac{dy}{dx} = xe^{y-x^2}$			
					$=c$ (C) e^{y-x^2} =	_	-c=0	
ii) The integrating factor of the differential equat					al equation $\frac{dx}{dy} + \frac{3x}{y} =$	$\frac{1}{y^2}$		
			(A) e^{y^3}	(B) y ³	(C) x^3	(D) $-y^3$		

			iii) The necessary condition for the differential equation to be exact (A) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (B) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (C) $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$ (D) $\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$
			iv) The orthogonal trajectory of $y^2 = 4a(x + a)$ is (A) $y^2 = 4a(x + a)$ (B) $x^2 = 4a(y + a)$ (C) $y = mx + c$ (D) None of these. (04 Marks)
_		b.	Solve $e^y \left(\frac{dy}{dx} + 1 \right) = e^x$ (04 Marks)
	6		Solve $\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$ (06 Marks)
		d.	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$. (06 Marks
		a.	i) If $\frac{\text{lt}}{n \to \infty} \frac{U_{n+1}}{U_n} = l$, then the series is convergent if
ery .			(A) $l < 1$ (B) $l > 1$ (C) $l = 1$ (D) $l = 0$ ii) $\sum \frac{1}{n(n+2)}$ series is
			(A) Convergent (B) Divergent (C) Oscillatory (D) Absolutely convergent iii) Every absolutely convergent series is necessarily (A) Divergent (B) Convergent (C) Conditionally convergent (D) None of these
			iv) The convergence of the series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}$ is tested by
		b.	(A) Ratio test (B) Raabe's test (C) Leibnitz test (D) Cauchy Riot test. (04 Marks Examine the series $\frac{1}{1.3.5} + \frac{2}{3.5.7} + \frac{3}{5.7.9}$ for convergence. (04 Marks
		c.	Test the series for convergence $1 + \frac{2}{3}x + \frac{2.3}{3.5}x^2 + \frac{2.3.4}{3.5.7}x^3$, $x > 0$. (06 Marks
		d.	Find the nature of the series $\frac{x}{1.2} - \frac{x^2}{2.3} + \frac{x^3}{3.4} - \frac{x^4}{4.5} + \dots, x > 0.$ (06 Marks)
25	7	a.	 i) if 2x + 3y + 4z + 5 = 0 is the equation of a plane, then 2, 3, 4 represent (A) Direction ratios of the normal to the plane (B) Direction cosines of the normal to the plane (C) Direction ratios of a line parallel to the plane (D) None of these ii) A line makes angles α, β, γ with the co-ordinate axes, then sin²α + sin²β + sin²γ
			equal to (A) 1 (B) 2 (C) $8/3$ (D) $4/3$ iii) The length of the perpendicular from the origin onto the plane $3x + 4y + 12z = 52$ is
			(A) 4 (B) 3 (C) 0 (D) - I iv) The two lines are said to be parallel if (A) $a_1a_2 + b_1b_2 + c_1c_2 = 0$ (B) $a_1/a_2 = b_1/b_2 = c_1/c_2$ (C) $a_1/b_1 + a_2/b_2 + c_1/c_2 = 0$ (D) None of these. (04 Marks)
		b.	Show that the angle between any two diagonals of a cube is $\cos^{-1}(1/3)$. (04 Mark)
		C.	Show that the lines $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and $x + 2y + 3z - 8 = 0 = 2x + 3y + 4z - 11$ intersection
		d.	Find their point of intersection and the equation of the plane containing them. Find the image of the point $(2, -1, 3)$ in the plane $2x + 4y + z - 24 = 0$. (06 Mark)
	8	a.	i) The velocity of the moving particle along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ is (A) $-e^{-t}i - 6\sin 3tj + 6\cos 3tk$ (B) $e^{-t}i - 18\cos 3tj - 18\sin 3tk$ (C) $e^{-t}i + 2\cos 3tj + 2\sin 3tk$ (D) $e^{-t} - 6\sin 3t$ 3 of 4

The resultant of a gradient is ii)

(A) Vector

(B) Scalar

(C) Irrotational

(D) Field

iii) If the vector $\vec{F} = (x+3y)i + (y-2z)j + (x+az)k$ is Solenoidal then a is equal to

(B) - 2iv) If $F = x^2 + y^2 + z^2$, then curl grad F is

(C)0

(D) 1

(D) 2

(04 Marks)

Find the angle between the surfaces $\phi = x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point

Show that $\vec{F} = \frac{xi + yj}{x^2 + y^2}$ is both Solenoidal & irrotational.

(06 Marks)

Prove that curl curl $\vec{F} = \text{grad div } \vec{F} - \nabla^2 \vec{F}$

(06 Marks)

