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PART – A                (10 x 2 = 20) 

          Answer ALL the Questions 
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 where C is the circle |z| = 1. 
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9. Explain Null hypothesis and Alternative hypothesis. 

 

10. What are the assumptions for student’s‘t’ test? 

 

 

 



PART – B      (5 x 12 = 60) 

Answer All the Questions 

 

11. (a) Find the Laplace transform of ttet
t 2cos22 −
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12. (a) Find the Laplace Transform of
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  such that f(t+2)=f(t). 

 

 (b) Verify the initial and final value theorem for  
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13. Using Laplace transform, solve ty
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that y (0) = y l (0) = 0. 
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14.  Solve, by using Laplace transform 123 =++ x
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 given that x = 0 and y = 0 when t = 0. 

 

15. (a) If f(x) is a regular function, prove that 
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 (b) Given that ,
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16. (a) Construct the analytic function given that 

  2u+v=e
x
[cosy–siny]   

 (b) Find the bilinear mapping which maps –1, 0, 1 of the z- 

  plane onto –1,–i,1 of the w-plane.  Show that under this  

  mapping the upper half of the z-plane maps on to the interior  

  of the unit circle |w| = 1. 

 

17. (a) Using Cauchy’s integral formula, evaluate ∫
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  where C is the circle |z + 1 –i| = 2. 

 (b) Using contour integration, prove that 
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 (b) Expand 
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  (i) |z| > 3  (ii) 2 < |2| < 3 

 

19. (a) The following table gives the frequency of occurrence of the  

  digits 0, 1, …, 9 in the last place in the four figure logarithm  

  of numbers 10 – 99.  Examine if there is any peculiarity 

  

Digits 0 1 2 3 4 5 6 7 8 9 

Frequency 6 16 15 10 12 12 3 2 9 5 

 

   (b) The following table gives the length of 12 samples of  

  Egyptian cotton taken from a consignment 48, 46, 49, 46,  

  52, 45, 43, 47, 47, 46, 45, 50.  Test if the mean length of the  

  consignment comes taken as 46. 

 

(or) 



 

20. The nicotine contents in two samples of tobacco are given below: 

  

 

 

Can you say that the two samples came from the same population? 

 

Sample I: 21 24 25 27 26 

Sample II: 22 27 28 31 30 


