BE7-R3: APPLIED BIOINFORMATICS

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) Define the terms "Transcription" and "Translation" in the context of protein synthesis.
- b) Consider the DNA string 5' TTCCAACGGCCATGA 3'. Write all the 5' substrings ending with A.
- c) What is the order of computational complexity in pairwise sequence comparisons?
- d) Why is dynamic programming technique not considered for large scale database homology search such as "BLAST"?
- e) How is the degree of dependence defined in a simple markov chain model?
- f) What are the disadvantages of using higher order markov model?
- g) Outline the purpose or relevance of performing "Multiple Sequence Alignment".

(7x4)

2.

- a) How are bioinformatics tools and techniques helpful in analyzing raw sequence and structure data?
- b) Compare and contrast the genomic structure of Prokaryote and Eukaryote.
- c) Define low complexity sequence and why should it be masked?

(8+6+4)

3.

- a) Provide the basic dynamic programming algorithm for the local and global pair-wise sequence alignment problem.
- b) Consider the problem of aligning two DNA sequence of E.coli. These sequences are GGGTGATTAGCT and GCTGATATAGCT. Derive a Global similarity alignment for the above two sequence using the scoring scheme S(a,a) = +1; s(a,b) = -1 if $a \neq b$; and gap = 2.
- c) Write the consensus for the following multiple alignment sequences:

Α	Τ	Α	G	Α	С
Α	Т	Α	G	Α	С
Α	Т	Α		Α	Τ
Α	Т	G	С	Α	Α
Α	T	Α	G	Т	С

(6+8+4)

4.

- a) List at least the four versions of the popular "Blast" homology search tool.
- b) Explain the basic algorithmic steps of "BLAST".
- c) How is the statistical significance of the "Blast hit" computed". What are the parameters that affect such computations?

(4+6+8)

5.

- a) Let the state symbols for the positive model be given as A+, T+, G+ and C+ and for the negative model be given as A-, T-, G- and C-. In a typical Markov Model framework, transitions can take place in two ways i.e. within and between the models. Draw the state transition diagram separately for these transitions.
- b) Explain how a simple prediction strategy can be developed using a first order Markov Chain model for discriminating a biologically important functional site.

(8+10)

6.

- a) Explain the hidden markov model framework. How does it differ from a markov chain?
- b) Explain the viterbi algorithm used in the popular "HMM model".
- c) How is Hidden markov model framework applied to multiple sequence alignment or gene prediction problem?

(4+6+8)

7.

- a) How is a "profile" distinct from a "motif"?
- b) Discuss progressive alignment method employed in Multiple sequence alignment problem.
- c) Explain, "sum of pairs" scoring method in the context of multiple sequence alignment. (4+8+6)