SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E/B.Tech - CSE/IT	
Title of the paper: Digital Computer Fundamentals	
Semester: III	Max.Marks: 80
Sub.Code: 11305-12305(04-05)-6C0044(06-07)	Time: 3 Hours
Date: 28-04-2009	Session: AN

PART – A Answer All the Questions (10 x 2 = 20)

- 1. Represent the decimal number 8620 in BCD and in excess 3 code.
- 2. Perform 9's complement subtraction on the following number: 3570 2100.
- 3. Determine using truth tables whether or not each of the expressions are equal
 - (a) f = a'c' + a'b + ac
 - (b) g = bc + ac + a'c'
- 4. Reduce the expression to minimum SOP form f = abc' + ab'c + a'bc + abc (3 terms, 6 literals)
- 5. Derive the Boolean expressions for the difference term in full subtractor.
- 6. With a simple block diagram and timing diagram explain delay in combinational logic circuits.
- 7. Draw the state diagram and behavioral table of SR flip flop.

- 8. List down the steps involved in the design process of sequential system.
- 9. Differentiate static and dynamic RAM.
- 10. What is a cache memory?

$$PART - B (5 x 12 = 60)$$

Answer All the Questions

- 11. Perform the following conversions
 - (a) decimal 225.225 to binary, octal and hexadecimal. (4)
 - (b) octal 623.77 to decimal, binary, and hexadecimal. (4)
 - (c) hexadecimal 2AC5.D to decimal, octal, and binary. (4)

- 12. Compare and contrast the following codes: Binary, Error Detection, Reflection and Alphanumeric codes.
- 13. (a) Simplify the following Boolean function by means of tabulation method. $F(A, B, C, D, E, F, G) = \Sigma (20, 28, 52, 60)$
 - (b) Implement the following function with either NAND or NOR gates. Use only four gates. Only the normal inputs are available.

F = w'xz + w'yz + x'yz' + wxy'zd = wyz

- 14. Find the minimum SOP expression using K Map method for the given expression.
 H (A, B, C, D, E) = Σm (1, 3, 10, 14, 21, 26, 28, 30) + Σd (5, 12, 17, 29)
- 15. Draw the truth table and Implement one bit full adder circuit using minimum number of NAND gates.

(or)

- 16. Describe the function of a magnitude comparator and realize it using logic gates.
- 17. Design a 3bit synchronous counter using JK flip flops.

(or)

18. Reduce the sequential system whose state table is given into one with minimum number of states using tabular method.

	Q*		Z	
Q	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	X = 1
А	В	D	0	0
В	Е	D	1	0
С	В	С	0	0
D	F	А	0	0
E	А	В	1	1
F	E	С	1	0

19. Explain the hierarchical organization of storage in a computer.

(or)

20. Brief on the following: Magnetic bubble, CCD, Optical storage.